IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924017124.html
   My bibliography  Save this article

Anti-tropical cyclone load reduction control of wind turbines based on deep neural network yaw algorithm

Author

Listed:
  • Yao, Qi
  • Tang, Jie
  • Ke, Yiming
  • Li, Li
  • Lu, Xiaoqin
  • Hu, Yang
  • Fang, Fang
  • Liu, Jizhen

Abstract

Rapid changes in the wind field of tropical cyclones can cause excessive loads and threaten the safety of offshore wind turbines. This paper designs a wind turbine yaw optimization strategy based on the deep neural network to reduce the structural loads of wind turbines caused by tropical cyclones. Firstly, the high-precision tropical cyclone data is used to analyze the characteristics of the wind field. Then, a pseudo-Monte Carlo experiment is designed to compensate for the incompleteness of the observed data. Furthermore, a robust nonlinear coupling model between the wind characteristics and the loads of the wind turbine is constructed by a deep neural network, and the optimal yaw angle is searched in real time based on this model. The simulation results show that the proposed deep neural network model based on pseudo-Monte Carlo scenario generation can robustly calculate the structural loads of wind turbines with a calculation error of less than 8 %. After applying this model to the real-time optimization control loop, the corresponding optimized yaw angle can be obtained according to the operating data of the wind turbine under tropical cyclone conditions so that the structural loads of the wind turbine are reduced. Compared with the no-yaw and traditional yaw strategies, the load suppression effect is 1 %–9 % under different working conditions. The proposed data-driven structural load model and load suppression algorithm will effectively improve the operating safety of wind turbines under tropical cyclone conditions.

Suggested Citation

  • Yao, Qi & Tang, Jie & Ke, Yiming & Li, Li & Lu, Xiaoqin & Hu, Yang & Fang, Fang & Liu, Jizhen, 2024. "Anti-tropical cyclone load reduction control of wind turbines based on deep neural network yaw algorithm," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924017124
    DOI: 10.1016/j.apenergy.2024.124329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924017124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Wenjie & Hou, Hui & Zhu, Shaohua & Liu, Qin & Wei, Ruizeng & He, Huan & Wang, Lei & Luo, Yingting, 2024. "An intelligent power grid emergency allocation technology considering secondary disaster and public opinion under typhoon disaster," Applied Energy, Elsevier, vol. 353(PA).
    2. Wang, H. & Ke, S.T. & Wang, T.G. & Zhu, S.Y., 2020. "Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects," Renewable Energy, Elsevier, vol. 153(C), pages 740-758.
    3. Qin, Mengfei & Shi, Wei & Chai, Wei & Fu, Xing & Li, Lin & Li, Xin, 2023. "Extreme structural response prediction and fatigue damage evaluation for large-scale monopile offshore wind turbines subject to typhoon conditions," Renewable Energy, Elsevier, vol. 208(C), pages 450-464.
    4. Dehghani, Nariman L. & Jeddi, Ashkan B. & Shafieezadeh, Abdollah, 2021. "Intelligent hurricane resilience enhancement of power distribution systems via deep reinforcement learning," Applied Energy, Elsevier, vol. 285(C).
    5. Yao, Qi & Hu, Yang & Deng, Hui & Luo, Zhiling & Liu, Jizhen, 2020. "Two-degree-of-freedom active power control of megawatt wind turbine considering fatigue load optimization," Renewable Energy, Elsevier, vol. 162(C), pages 2096-2112.
    6. Saravi, Vahid Sabzpoosh & Kalantar, Mohsen & Anvari-Moghaddam, Amjad, 2022. "Resilience-constrained expansion planning of integrated power–gas–heat distribution networks," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Lehan & Shi, Wei & Hu, Weifei & Chai, Wei & Hu, Zhiqiang & Wu, Jun & Li, Xin, 2025. "Short-term prediction of mooring tension for floating offshore wind turbines under typhoon conditions based on the VMD-MI-LSTM method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    2. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Zhou, Yizhou & Li, Xiang & Han, Haiteng & Wei, Zhinong & Zang, Haixiang & Sun, Guoqiang & Chen, Sheng, 2024. "Resilience-oriented planning of integrated electricity and heat systems: A stochastic distributionally robust optimization approach," Applied Energy, Elsevier, vol. 353(PA).
    4. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    5. Liu, Yingzhou & Li, Xin & Shi, Wei & Wang, Wenhua & Jiang, Zhiyu, 2024. "Vibration control of a monopile offshore wind turbines under recorded seismic waves," Renewable Energy, Elsevier, vol. 226(C).
    6. Cai, Chang & Yang, Yingjian & Jia, Yan & Wu, Guangxing & Zhang, Hairui & Yuan, Feiqi & Qian, Quan & Li, Qing'an, 2023. "Aerodynamic load evaluation of leading edge and trailing edge windward states of large-scale wind turbine blade under parked condition," Applied Energy, Elsevier, vol. 350(C).
    7. Shi, Qingxin & Li, Fangxing & Dong, Jin & Olama, Mohammed & Wang, Xiaofei & Winstead, Chris & Kuruganti, Teja, 2022. "Co-optimization of repairs and dynamic network reconfiguration for improved distribution system resilience," Applied Energy, Elsevier, vol. 318(C).
    8. Li, Xuehan & Wang, Wei & Fang, Fang & Liu, Jizhen & Chen, Zhe, 2025. "Improving active power regulation for wind turbine by phase leading cascaded error-based active disturbance rejection control and multi-objective optimization," Renewable Energy, Elsevier, vol. 243(C).
    9. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Liang, Jun & Fu, Yuhao & Wang, Ying & Ou, Jinping, 2024. "Identification of equivalent wind and wave loads for monopile-supported offshore wind turbines in operating condition," Renewable Energy, Elsevier, vol. 237(PA).
    11. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    12. Anwar, Ghazanfar Ali & Zhang, Xiaoge, 2024. "Deep reinforcement learning for intelligent risk optimization of buildings under hazard," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    13. Lin, Yumian & Xiong, Houbo & Zhou, Yue & Wang, Tianjing & Lin, Yujie & Guo, Chuangxin, 2025. "Distributionally robust service restoration for integrated electricity-heating systems considering secondary strikes of subsequent random events," Applied Energy, Elsevier, vol. 380(C).
    14. Hou, Hui & Tang, Junyi & Zhang, Zhiwei & Wang, Zhuo & Wei, Ruizeng & Wang, Lei & He, Huan & Wu, Xixiu, 2023. "Resilience enhancement of distribution network under typhoon disaster based on two-stage stochastic programming," Applied Energy, Elsevier, vol. 338(C).
    15. Naixuan Zhu & Guilian Wu & Hao Chen & Nuoling Sun, 2025. "Resilience Enhancement for Distribution Networks Under Typhoon-Induced Multi-Source Uncertainties," Energies, MDPI, vol. 18(13), pages 1-21, June.
    16. Li, Zhiguo & Gao, Zhiying & Chen, Yongyan & Zhang, Liru & Wang, Jianwen, 2022. "A novel time-variant prediction model for megawatt flexible wind turbines and its application in NTM and ECD conditions," Renewable Energy, Elsevier, vol. 196(C), pages 1158-1169.
    17. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    18. Olleik, Majd & Tarhini, Hussein & Auer, Hans, 2025. "Integrating upstream natural gas and electricity planning in times of energy transition," Applied Energy, Elsevier, vol. 377(PB).
    19. Mao, Ding & Wang, Peng & Fang, Yi-Ping & Ni, Long, 2024. "Securing heat-supply against seismic risks: A two-staged framework for assessing vulnerability and economic impacts in district heating networks," Applied Energy, Elsevier, vol. 369(C).
    20. Zhang, Guozhou & Hu, Weihao & Zhao, Yincheng & Cui, Zhengjie & Chen, Jianjun & Tang, Chao & Chen, Zhe, 2024. "Meta-learning and proximal policy optimization driven two-stage emergency allocation strategy for multi-energy system against typhoon disasters," Renewable Energy, Elsevier, vol. 237(PC).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924017124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.