IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v216y2025ics1364032125002795.html
   My bibliography  Save this article

Short-term prediction of mooring tension for floating offshore wind turbines under typhoon conditions based on the VMD-MI-LSTM method

Author

Listed:
  • Hu, Lehan
  • Shi, Wei
  • Hu, Weifei
  • Chai, Wei
  • Hu, Zhiqiang
  • Wu, Jun
  • Li, Xin

Abstract

The safety of mooring systems for floating offshore wind turbine platforms is critical for their normal operation. During extreme weather events such as typhoons, ensuring the integrity of mooring lines becomes a paramount concern. With advancements in artificial intelligence technology, the integration of deep learning methods for short-term prediction of mooring line tension under typhoon conditions has introduced innovative solutions to address this safety issue. In this study, the proposed VMD-MI-LSTM neural network is employed to forecast mooring line tension under typhoon conditions over short periods. The platform model utilized in this research is the 5-MW Braceless semisubmersible platform, with the transient wind fields of Typhoon Hagibis serving as the research scenarios. Through fully coupled simulations, the tension of mooring lines under typhoon conditions is computed. Using wave height time series and typhoon wind speed as input data and mooring line tension data as output, a dataset is constructed. The optimal model parameters are determined through exploration of the hyperparameter space to develop the multi-input long short-term memory (MI-LSTM) mooring line tension prediction model. An analysis of the prediction results for mooring line #1 is conducted. Given the similarity of environmental conditions across different platform mooring lines, the model's universality is evaluated by predicting mooring line #1 and comparing it with the VMD-MI-LSTM model. This comparison highlights the optimization effect of the VMD variational mode decomposition method. This study provides short-term predictions of mooring line tension under typhoon conditions. By integrating with the mooring line adjustment system, effective adjustment of the mooring system of the floating wind turbine platform can be achieved under extreme environmental conditions, thereby enhancing the platform's safety and resilience against risks.

Suggested Citation

  • Hu, Lehan & Shi, Wei & Hu, Weifei & Chai, Wei & Hu, Zhiqiang & Wu, Jun & Li, Xin, 2025. "Short-term prediction of mooring tension for floating offshore wind turbines under typhoon conditions based on the VMD-MI-LSTM method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125002795
    DOI: 10.1016/j.rser.2025.115606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125002795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, H. & Ke, S.T. & Wang, T.G. & Zhu, S.Y., 2020. "Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects," Renewable Energy, Elsevier, vol. 153(C), pages 740-758.
    2. Yichao Liu & Daoyi Chen & Qian Yi & Sunwei Li, 2017. "Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part I: Wind Speed Profile Model," Energies, MDPI, vol. 10(1), pages 1-24, January.
    3. Qin, Mengfei & Shi, Wei & Chai, Wei & Fu, Xing & Li, Lin & Li, Xin, 2023. "Extreme structural response prediction and fatigue damage evaluation for large-scale monopile offshore wind turbines subject to typhoon conditions," Renewable Energy, Elsevier, vol. 208(C), pages 450-464.
    4. Yichao Liu & Sunwei Li & Qian Yi & Daoyi Chen, 2017. "Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part II: Wave Spectrum Model," Energies, MDPI, vol. 10(1), pages 1-24, January.
    5. Tian, Zhongmei & Shi, Wei & Li, Xin & Park, Yonghui & Jiang, Zhiyu & Wu, Ji, 2025. "Numerical simulations of floating offshore wind turbines with shared mooring under current-only conditions," Renewable Energy, Elsevier, vol. 238(C).
    6. Guihua Wang & Lingwei Wu & Wei Mei & Shang-Ping Xie, 2022. "Ocean currents show global intensification of weak tropical cyclones," Nature, Nature, vol. 611(7936), pages 496-500, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis M. López-Manrique & E. V. Macias-Melo & O. May Tzuc & A. Bassam & K. M. Aguilar-Castro & I. Hernández-Pérez, 2018. "Assessment of Resource and Forecast Modeling of Wind Speed through An Evolutionary Programming Approach for the North of Tehuantepec Isthmus (Cuauhtemotzin, Mexico)," Energies, MDPI, vol. 11(11), pages 1-22, November.
    2. Clark, Caitlyn E. & Miller, Annalise & DuPont, Bryony, 2019. "An analytical cost model for co-located floating wind-wave energy arrays," Renewable Energy, Elsevier, vol. 132(C), pages 885-897.
    3. Santiago Salvador & Xurxo Costoya & Francisco Javier Sanz-Larruga & Luis Gimeno, 2018. "Development of Offshore Wind Power: Contrasting Optimal Wind Sites with Legal Restrictions in Galicia, Spain," Energies, MDPI, vol. 11(4), pages 1-25, March.
    4. Longfu Luo & Xiaofeng Zhang & Dongran Song & Weiyi Tang & Jian Yang & Li Li & Xiaoyu Tian & Wu Wen, 2018. "Optimal Design of Rated Wind Speed and Rotor Radius to Minimizing the Cost of Energy for Offshore Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-17, October.
    5. Thomas Poulsen & Charlotte Bay Hasager, 2017. "The (R)evolution of China: Offshore Wind Diffusion," Energies, MDPI, vol. 10(12), pages 1-32, December.
    6. Yao, Qi & Tang, Jie & Ke, Yiming & Li, Li & Lu, Xiaoqin & Hu, Yang & Fang, Fang & Liu, Jizhen, 2024. "Anti-tropical cyclone load reduction control of wind turbines based on deep neural network yaw algorithm," Applied Energy, Elsevier, vol. 376(PB).
    7. Ju-Young Shin & Changsam Jeong & Jun-Haeng Heo, 2018. "A Novel Statistical Method to Temporally Downscale Wind Speed Weibull Distribution Using Scaling Property," Energies, MDPI, vol. 11(3), pages 1-27, March.
    8. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    9. Liang, Jun & Fu, Yuhao & Wang, Ying & Ou, Jinping, 2024. "Identification of equivalent wind and wave loads for monopile-supported offshore wind turbines in operating condition," Renewable Energy, Elsevier, vol. 237(PA).
    10. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    11. Li, Zhiguo & Gao, Zhiying & Chen, Yongyan & Zhang, Liru & Wang, Jianwen, 2022. "A novel time-variant prediction model for megawatt flexible wind turbines and its application in NTM and ECD conditions," Renewable Energy, Elsevier, vol. 196(C), pages 1158-1169.
    12. Li, Changen & Chen, Peng & Shui, Yidi & Cheng, Zhengshun & Wang, Shuaishuai & Erfort, Gareth, 2025. "An efficient integrated optimization framework for conceptual design of floater for floating wind turbines: A case study," Renewable Energy, Elsevier, vol. 245(C).
    13. Jianmin Lin & Sunke Fang & Runjing He & Qunshu Tang & Fengzhong Qu & Baoshan Wang & Wen Xu, 2024. "Monitoring ocean currents during the passage of Typhoon Muifa using optical-fiber distributed acoustic sensing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Liu, Yingzhou & Li, Xin & Shi, Wei & Wang, Wenhua & Jiang, Zhiyu, 2024. "Vibration control of a monopile offshore wind turbines under recorded seismic waves," Renewable Energy, Elsevier, vol. 226(C).
    15. Cai, Chang & Yang, Yingjian & Jia, Yan & Wu, Guangxing & Zhang, Hairui & Yuan, Feiqi & Qian, Quan & Li, Qing'an, 2023. "Aerodynamic load evaluation of leading edge and trailing edge windward states of large-scale wind turbine blade under parked condition," Applied Energy, Elsevier, vol. 350(C).
    16. Chen, Yisu & Wu, Di & Yu, Yuguo & Gao, Wei, 2021. "Do cyclone impacts really matter for the long-term performance of an offshore wind turbine?," Renewable Energy, Elsevier, vol. 178(C), pages 184-201.
    17. Wang, H. & Ke, S.T. & Wang, T.G. & Kareem, A. & Hu, L. & Ge, Y.J., 2022. "Multi-stage typhoon-induced wind effects on offshore wind turbines using a data-driven wind speed field model," Renewable Energy, Elsevier, vol. 188(C), pages 765-777.
    18. Oh, So Young & Joung, Chanwoo & Lee, Seonghwan & Shim, Yoon-Bo & Lee, Dahun & Cho, Gyu-Eun & Jang, Juhyeong & Lee, In Yong & Park, Young-Bin, 2024. "Condition-based maintenance of wind turbine structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    19. Ren, Yajun & Shi, Wei & Venugopal, Vengatesan & Zhang, Lixian & Li, Xin, 2024. "Experimental study of tendon failure analysis for a TLP floating offshore wind turbine," Applied Energy, Elsevier, vol. 358(C).
    20. Shambhu Sajith & RS Aswani & Mohammad Younus Bhat & Anil Kumar & Tarun Dhingra, 2023. "Can offshore wind energy lead to a sustainable and secure South China Sea?," Energy & Environment, , vol. 34(7), pages 2858-2875, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125002795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.