IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v238y2025ics0960148124019864.html

Numerical simulations of floating offshore wind turbines with shared mooring under current-only conditions

Author

Listed:
  • Tian, Zhongmei
  • Shi, Wei
  • Li, Xin
  • Park, Yonghui
  • Jiang, Zhiyu
  • Wu, Ji

Abstract

In recent years, with the continuous development of offshore wind power, reducing construction costs has become one of the key issues. Among them, the mooring system cost accounts for about 20%–30 % of the entire floating offshore wind turbine investment. The concept of shared mooring systems can potentially reduce the cost of floating offshore wind farms (FOWF). In this paper, research is carried out on the dynamic response of an FOWF under representative current conditions of the South China Sea. The comparative analysis focuses on the motion response of a single-spar Floating Offshore Wind Turbine (FOWT)and a dual-spar FOWF. A sensitivity analysis was performed on the length of the shared mooring line. The NREL 5-MW wind turbine with a spar platform is taken as a basis FOWT model for this work. The frequency-domain hydrodynamics is computed based on potential flow theory. The time domain analysis was simulated in a software for marine operations: SIMA(DNV). The viscous effect on the floater is modeled by the drag term in Morison's equation and the hydrodynamic force acting on the mooring line is computed using Morison's equation. Based on the finite element method, the mooring line is defined by a sequence of segments with homogeneous cross-sectional properties. The result shows that with the increase of the current return period, the two platforms move synchronously, and the movement increases almost linearly. Moreover, the motion response of the shared mooring platform is smaller than that of the single mooring platform under the same conditions, especially in the vertical direction. This paper contributes to improved fundamental understanding of shared mooring systems under complex marine environmental loads.

Suggested Citation

  • Tian, Zhongmei & Shi, Wei & Li, Xin & Park, Yonghui & Jiang, Zhiyu & Wu, Ji, 2025. "Numerical simulations of floating offshore wind turbines with shared mooring under current-only conditions," Renewable Energy, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124019864
    DOI: 10.1016/j.renene.2024.121918
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).
    2. Chi-Yu Chian & Yi-Qing Zhao & Tsung-Yueh Lin & Bryan Nelson & Hsin-Haou Huang, 2018. "Comparative Study of Time-Domain Fatigue Assessments for an Offshore Wind Turbine Jacket Substructure by Using Conventional Grid-Based and Monte Carlo Sampling Methods," Energies, MDPI, vol. 11(11), pages 1-17, November.
    3. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Changen & Chen, Peng & Shui, Yidi & Cheng, Zhengshun & Wang, Shuaishuai & Erfort, Gareth, 2025. "An efficient integrated optimization framework for conceptual design of floater for floating wind turbines: A case study," Renewable Energy, Elsevier, vol. 245(C).
    2. Wang, Jiazhi & Song, Zhaobo & Shi, Wei & Wang, Shuaishuai & Wang, Wenhua & Haider, Rizwan & Li, Xin, 2025. "Design and coupled analysis of a novel floating offshore wind turbine combined with a fish cage for deep water," Renewable Energy, Elsevier, vol. 247(C).
    3. Hu, Lehan & Shi, Wei & Hu, Weifei & Chai, Wei & Hu, Zhiqiang & Wu, Jun & Li, Xin, 2025. "Short-term prediction of mooring tension for floating offshore wind turbines under typhoon conditions based on the VMD-MI-LSTM method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    4. Hanbo Zhai & Chaojun Yan & Wei Shi & Lixian Zhang & Xinmeng Zeng & Xu Han & Constantine Michailides, 2025. "Experimental Study on the Hydrodynamic Analysis of a Floating Offshore Wind Turbine Under Focused Wave Conditions," Energies, MDPI, vol. 18(15), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiazhi & Ren, Yajun & Shi, Wei & Collu, Maurizio & Venugopal, Vengatesan & Li, Xin, 2025. "Multi-objective optimization design for a 15 MW semisubmersible floating offshore wind turbine using evolutionary algorithm," Applied Energy, Elsevier, vol. 377(PB).
    2. Shaohui Yang & Haijian Li & Yan Huang & Jianyu Fan & Zhichang Du & Yongqiang Tu & Chenglong Li & Beichen Lin, 2025. "Research and Simulation Analysis on a Novel U-Tube Type Dual-Chamber Oscillating Water Column Wave Energy Conversion Device," Energies, MDPI, vol. 18(15), pages 1-15, August.
    3. Clemens Hübler & Wout Weijtjens & Cristian G. Gebhardt & Raimund Rolfes & Christof Devriendt, 2019. "Validation of Improved Sampling Concepts for Offshore Wind Turbine Fatigue Design," Energies, MDPI, vol. 12(4), pages 1-20, February.
    4. Göteman, Malin & Panteli, Mathaios & Rutgersson, Anna & Hayez, Léa & Virtanen, Mikko J. & Anvari, Mehrnaz & Johansson, Jonas, 2025. "Resilience of offshore renewable energy systems to extreme metocean conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    5. Rolo, Pedro & Vidal, João V. & Kholkin, Andrei L. & Alves, Luis Nero & Soares dos Santos, Marco P., 2025. "Multidimensional vibrationally driven energy generation: State-of-the-art review and modelling generalization," Applied Energy, Elsevier, vol. 396(C).
    6. Zhang, Jincheng & Zhao, Xiaowei & Greaves, Deborah & Jin, Siya, 2023. "Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments," Applied Energy, Elsevier, vol. 341(C).
    7. Liu, Yingzhou & Li, Xin & Shi, Wei & Wang, Wenhua & Jiang, Zhiyu, 2024. "Vibration control of a monopile offshore wind turbines under recorded seismic waves," Renewable Energy, Elsevier, vol. 226(C).
    8. Tsung-Yueh Lin & Yi-Qing Zhao & Hsin-Haou Huang, 2020. "Representative Environmental Condition for Fatigue Analysis of Offshore Jacket Substructure," Energies, MDPI, vol. 13(20), pages 1-20, October.
    9. Majidi, Ajab Gul & Ramos, Victor & Rosa-Santos, Paulo & das Neves, Luciana & Taveira-Pinto, Francisco, 2025. "Power production assessment of wave energy converters in mainland Portugal," Renewable Energy, Elsevier, vol. 243(C).
    10. Dengshuai Wang & Zhenquan Zhang & Yunpeng Hai & Yanjun Liu & Gang Xue, 2023. "Design and Control of Hydraulic Power Take-Off System for an Array of Point Absorber Wave Energy Converters," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    11. Saincher, Shaswat & Sriram, V. & Stoesser, Thorsten, 2025. "Shared moorings for floating offshore renewable energy technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 224(C).
    12. Celesti, Maria Luisa & Mattiazzo, Giuliana & Faedo, Nicolás, 2025. "Towards modelling and control strategies for hybrid wind-wave energy converters: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 224(C).
    13. Chen, Xuanyu & Jiang, Changqing & Zhang, Yuan & Xu, Peng, 2025. "Experimental and numerical study on a dual-raft wave energy converter with different hinged configurations," Energy, Elsevier, vol. 322(C).
    14. Shi, Wei & Wang, Jiazhi & Ren, Yajun & Wang, Shuaishuai & Venugopal, Vengatesan & Han, Xu, 2025. "Novel conceptual design and performance analysis of a semi-submersible platform for 22 MW floating offshore wind turbine," Energy, Elsevier, vol. 334(C).
    15. Yi Yang & Chenyu Liang & Shi Liu & Jiale Jiang & Zheng Huang & Chonggan Liang & Wenjun Ou & Tao Tao & Mingsheng Chen, 2025. "Frequency and Time Domain Simulations of a 15 MW Floating Wind Turbine Integrating with Multiple Flap-Type WECs," Sustainability, MDPI, vol. 17(6), pages 1-28, March.
    16. Yang, Shaohui & Zhu, Wenzheng & Tu, Yongqiang & Cao, Gengning & Chen, Xiaokun & Du, Zhichang & Fan, Jianyu & Huang, Yan, 2024. "Study on the influence of heave plate on energy capture performance of central pipe oscillating water column wave energy converter," Energy, Elsevier, vol. 312(C).
    17. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Wang, Tianyuan & Li, Demin & Greaves, Deborah & Hann, Martyn & Zhu, Kai & Li, Yanni & Gong, Haoxiang & Tao, Ji & Cao, Feifei & Shi, Hongda, 2025. "Numerical modelling and PTO damping optimization of an IEA-15-MW-VolturnUS-WEC hybrid system in real sea states," Energy, Elsevier, vol. 330(C).
    19. Oikonomou, Charikleia L.G. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Unveiling the potential of using a spar-buoy oscillating-water-column wave energy converter for low-power stand-alone applications," Applied Energy, Elsevier, vol. 292(C).
    20. Housner, Stein & Hall, Matthew & Tran, Thanh Toan & de Miguel Para, Borja & Maeso, Aimar, 2024. "Shared mooring system designs and cost estimates for wave energy arrays," Renewable Energy, Elsevier, vol. 231(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124019864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.