IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v375y2024ics0306261924013679.html
   My bibliography  Save this article

An improved data-driven predictive optimal control approach for designing hybrid electric vehicle energy management strategies

Author

Listed:
  • Yin, Cheng
  • Zeng, Xiangrui
  • Yin, Zhouping

Abstract

This paper proposes an improved “prediction + optimal control” method for energy management in hybrid electric vehicles equipped with planetary gears. A differentiable predictor and a differentiable optimal controller are developed using supervised learning and reinforcement learning approaches, respectively. Three training steps are performed for the initial predictor, the optimal controller, and the final predictor. This method improves the traditional energy management predictive optimal control approach by incorporating an additional step of retraining the differentiable predictor. This adjustment ensures that the predictor does not blindly improve its performance based on evaluation criterion irrelevant to energy management, which was commonly used in previous studies. Instead, it focuses on enhancing the overall performance of energy management under the “prediction + optimal control” framework. The approach introduced in this paper is compared with the globally optimal dynamic programming results and traditional predictive optimal control methods on the Next Generation Simulation (NGSIM) data. Our method outperforms traditional approaches in energy management on both the training dataset and the test dataset. This further illustrates that the conventional practice of presumptuously optimizing predictors in “prediction + optimal control” methods can be improved using the proposed method.

Suggested Citation

  • Yin, Cheng & Zeng, Xiangrui & Yin, Zhouping, 2024. "An improved data-driven predictive optimal control approach for designing hybrid electric vehicle energy management strategies," Applied Energy, Elsevier, vol. 375(C).
  • Handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924013679
    DOI: 10.1016/j.apenergy.2024.123984
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924013679
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bao, Shuyue & Sun, Ping & Zhu, Jianxin & Ji, Qian & Liu, Junheng, 2022. "Improved multi-dimensional dynamic programming energy management strategy for a vehicle power-split hybrid powertrain," Energy, Elsevier, vol. 256(C).
    2. Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.
    3. Shuxian Li & Minghui Hu & Changchao Gong & Sen Zhan & Datong Qin, 2018. "Energy Management Strategy for Hybrid Electric Vehicle Based on Driving Condition Identification Using KGA-Means," Energies, MDPI, vol. 11(6), pages 1-16, June.
    4. Benaitier, Alexis & Krainer, Ferdinand & Jakubek, Stefan & Hametner, Christoph, 2023. "Optimal energy management of hybrid electric vehicles considering pollutant emissions during transient operations," Applied Energy, Elsevier, vol. 344(C).
    5. Lei, Zhenzhen & Qin, Datong & Hou, Liliang & Peng, Jingyu & Liu, Yonggang & Chen, Zheng, 2020. "An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information," Energy, Elsevier, vol. 190(C).
    6. Jafari, Mohammad & Malekjamshidi, Zahra, 2020. "Optimal energy management of a residential-based hybrid renewable energy system using rule-based real-time control and 2D dynamic programming optimization method," Renewable Energy, Elsevier, vol. 146(C), pages 254-266.
    7. Zhuang, Dian & Gan, Vincent J.L. & Duygu Tekler, Zeynep & Chong, Adrian & Tian, Shuai & Shi, Xing, 2023. "Data-driven predictive control for smart HVAC system in IoT-integrated buildings with time-series forecasting and reinforcement learning," Applied Energy, Elsevier, vol. 338(C).
    8. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    9. Hu, Dong & Xie, Hui & Song, Kang & Zhang, Yuanyuan & Yan, Long, 2023. "An apprenticeship-reinforcement learning scheme based on expert demonstrations for energy management strategy of hybrid electric vehicles," Applied Energy, Elsevier, vol. 342(C).
    10. Wang, Yong & Wu, Yuankai & Tang, Yingjuan & Li, Qin & He, Hongwen, 2023. "Cooperative energy management and eco-driving of plug-in hybrid electric vehicle via multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 332(C).
    11. Ximing Wang & Hongwen He & Fengchun Sun & Xiaokun Sun & Henglu Tang, 2013. "Comparative Study on Different Energy Management Strategies for Plug-In Hybrid Electric Vehicles," Energies, MDPI, vol. 6(11), pages 1-20, October.
    12. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 103(C), pages 488-506.
    13. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Ritter, Andreas & Widmer, Fabio & Duhr, Pol & Onder, Christopher H., 2022. "Long-term stochastic model predictive control for the energy management of hybrid electric vehicles using Pontryagin’s minimum principle and scenario-based optimization," Applied Energy, Elsevier, vol. 322(C).
    15. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    16. Zhao, Xin & Doering, Otto C. & Tyner, Wallace E., 2015. "The economic competitiveness and emissions of battery electric vehicles in China," Applied Energy, Elsevier, vol. 156(C), pages 666-675.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, He & Chu, Liang & Zhang, Yuanjian & Zhao, Di & Hu, Jincheng & Xie, Zhihao & Liu, Ming, 2024. "Towards sustainable high-speed cruising: Optimizing energy efficiency of plug-in hybrid electric vehicle via intelligent pulse-and-glide strategy," Energy, Elsevier, vol. 311(C).
    2. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Bao, Shuyue & Sun, Ping & Zhu, Jianxin & Ji, Qian & Liu, Junheng, 2022. "Improved multi-dimensional dynamic programming energy management strategy for a vehicle power-split hybrid powertrain," Energy, Elsevier, vol. 256(C).
    4. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Matthieu Matignon & Toufik Azib & Mehdi Mcharek & Ahmed Chaibet & Adriano Ceschia, 2023. "Real-Time Integrated Energy Management Strategy Applied to Fuel Cell Hybrid Systems," Energies, MDPI, vol. 16(6), pages 1-21, March.
    6. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).
    7. Mayyas, Abdel Ra'ouf & Kumar, Sushil & Pisu, Pierluigi & Rios, Jacqueline & Jethani, Puneet, 2017. "Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach," Applied Energy, Elsevier, vol. 204(C), pages 287-302.
    8. Yijiao Wang & Guoguang Zhou & Ting Li & Xiao Wei, 2019. "Comprehensive Evaluation of the Sustainable Development of Battery Electric Vehicles in China," Sustainability, MDPI, vol. 11(20), pages 1-27, October.
    9. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    10. Li, Cheng & Xu, Xiangyang & Zhu, Helong & Gan, Jiongpeng & Chen, Zhige & Tang, Xiaolin, 2024. "Research on car-following control and energy management strategy of hybrid electric vehicles in connected scene," Energy, Elsevier, vol. 293(C).
    11. Chen, Jiayu & Kuboyama, Tatsuya & Shen, Tielong, 2025. "Collective behavior information-based design approach to energy management strategy for large-scale population of HEVs," Applied Energy, Elsevier, vol. 377(PC).
    12. Diao, Qinghua & Sun, Wei & Yuan, Xinmei & Li, Lili & Zheng, Zhi, 2016. "Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies," Applied Energy, Elsevier, vol. 178(C), pages 567-578.
    13. Jinquan, Guo & Hongwen, He & Jianwei, Li & Qingwu, Liu, 2021. "Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning," Energy, Elsevier, vol. 226(C).
    14. Juan Carlos Paredes-Rojas & Ramón Costa-Castelló & Rubén Vázquez-Medina & Juan Alejandro Flores-Campos & Christopher Rene Torres-San Miguel, 2025. "Experimental Study on Using Biodiesel in Hybrid Electric Vehicles," Energies, MDPI, vol. 18(7), pages 1-22, March.
    15. Nienhueser, Ian Andrew & Qiu, Yueming, 2016. "Economic and environmental impacts of providing renewable energy for electric vehicle charging – A choice experiment study," Applied Energy, Elsevier, vol. 180(C), pages 256-268.
    16. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).
    17. Zhang, Pei & Yan, Fuwu & Du, Changqing, 2015. "A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 88-104.
    18. Pei Zhang & Xianpan Wu & Changqing Du & Hongming Xu & Huawu Wang, 2020. "Adaptive Equivalent Consumption Minimization Strategy for Hybrid Heavy-Duty Truck Based on Driving Condition Recognition and Parameter Optimization," Energies, MDPI, vol. 13(20), pages 1-20, October.
    19. Yang, Kun & Zhang, Benjun & Chu, Yongkun & Wang, Zhongwei & Shao, Changjiang & Ma, Chao, 2024. "Research on the configuration design and energy management of a novel plug-in hybrid electric vehicle based on the double-rotor motor and hybrid energy storage system," Energy, Elsevier, vol. 302(C).
    20. Li, Menglin & Yin, Long & Yan, Mei & Wu, Jingda & He, Hongwe & Jia, Chunchun, 2024. "Hierarchical intelligent energy-saving control strategy for fuel cell hybrid electric buses based on traffic flow predictions," Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924013679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.