IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006342.html
   My bibliography  Save this article

Evaluating the efficiency and cost-effectiveness of RPB-based CO2 capture: A comprehensive approach to simultaneous design and operating condition optimization

Author

Listed:
  • Jung, Howoun
  • Park, Nohjin
  • Lee, Jay H.

Abstract

Despite ongoing global initiatives to reduce CO2 emissions, implementing large-scale CO2 capture using amine solvents is fraught with economic uncertainties and technical hurdles. The Rotating Packed Bed (RPB) presents a promising alternative to traditional packed towers, offering compact design and adaptability. Nonetheless, scaling RPB processes to an industrial level is challenging due to the nascent nature of its application. The complexity of designing RPB units, setting operating conditions, and evaluating process performance adds layers of difficulty to the adoption of RPB-based systems in industries. This study introduces an optimization-driven design and evaluation for CO2 capture processes utilizing RPB columns. By employing detailed process simulation, we aim to concurrently optimize unit design and operating parameters, underscoring its advantage over conventional sequential approaches. Our process design method integrates heuristic design recommendations as constraints, resulting in 9.4% to 12.7% cost savings compared to conventional sequential design methods. Furthermore, our comprehensive process-level analysis reveals that using concentrated MEA solvent can yield total cost savings of 13.4% to 25.0% compared to the standard 30 wt% MEA solvent. Additionally, the RPB unit can deliver an 8.5 to 23.6 times reduction in packing volume. While the commercial-scale feasibility of RPB technology has been established, the advancement of this field hinges on acquiring a broader and more robust dataset from commercial-scale implementations. Employing strategic methods like modularization could significantly reduce the entry barriers for CO2 capture projects, facilitating their broader adoption and implementation.

Suggested Citation

  • Jung, Howoun & Park, Nohjin & Lee, Jay H., 2024. "Evaluating the efficiency and cost-effectiveness of RPB-based CO2 capture: A comprehensive approach to simultaneous design and operating condition optimization," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006342
    DOI: 10.1016/j.apenergy.2024.123251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Bingtao & Tao, Wenwen & Zhong, Mei & Su, Yaxin & Cui, Guomin, 2016. "Process, performance and modeling of CO2 capture by chemical absorption using high gravity: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 44-56.
    2. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    3. Akinola, Toluleke E. & Bonilla Prado, Phebe L. & Wang, Meihong, 2022. "Experimental studies, molecular simulation and process modelling\simulation of adsorption-based post-combustion carbon capture for power plants: A state-of-the-art review," Applied Energy, Elsevier, vol. 317(C).
    4. Wu, Xiao & Wang, Meihong & Liao, Peizhi & Shen, Jiong & Li, Yiguo, 2020. "Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation," Applied Energy, Elsevier, vol. 257(C).
    5. Otitoju, Olajide & Oko, Eni & Wang, Meihong, 2023. "Modelling, scale-up and techno-economic assessment of rotating packed bed absorber for CO2 capture from a 250 MWe combined cycle gas turbine power plant," Applied Energy, Elsevier, vol. 335(C).
    6. Luo, Xiaobo & Wang, Meihong & Lee, Jonathan & Hendry, James, 2021. "Dynamic modelling based on surface renewal theory, model validation and process analysis of rotating packed bed absorber for carbon capture," Applied Energy, Elsevier, vol. 301(C).
    7. Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sha, Peng & Zheng, Cheng & Wu, Xiao & Shen, Jiong, 2025. "Physics informed integral neural network for dynamic modelling of solvent-based post-combustion CO2 capture process," Applied Energy, Elsevier, vol. 377(PA).
    2. Wang, Nuo & Zhou, Jianzhao & Ren, Jingzheng, 2025. "Recent advances in CO2 capture and utilization: From the perspective of process integration and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    3. Guo, Liheng & Ding, Yudong & Liao, Qiang & Zhu, Xun & Wang, Hong, 2022. "A new heat supply strategy for CO2 capture process based on the heat recovery from turbine exhaust steam in a coal-fired power plant," Energy, Elsevier, vol. 239(PA).
    4. Zhu, Mingjuan & Liu, Yudong & Wu, Xiao & Shen, Jiong, 2023. "Dynamic modeling and comprehensive analysis of direct air-cooling coal-fired power plant integrated with carbon capture for reliable, economic and flexible operation," Energy, Elsevier, vol. 263(PA).
    5. Lei, Ting & Liang, Youcai & Zhu, Yan & Ye, Kai & Wang, Jianming & Liang, Yaling, 2025. "A novel post-combustion CO2 capture process for natural gas combined cycle power plant based on waste energy utilization and absorption heat transformer," Energy, Elsevier, vol. 316(C).
    6. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    7. Harutyunyan, Artur & Badyda, Krzysztof & Wołowicz, Marcin, 2025. "Analyzing of different repowering methods on the example of 300 MW existing steam cycle power plant using gatecycle™ software," Energy, Elsevier, vol. 314(C).
    8. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    9. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    10. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    11. Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
    12. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    13. Hugo Gaspar Hernandez-Palma & Dairo J. Novoa & Jorge Enrique Taboada à lvarez, 2024. "New Trends in Green Projects Aimed at Clean Energy: An Analysis of the Scientific Literature," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 278-286, November.
    14. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    15. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    16. Liu, Xiong & Godbole, Ajit & Lu, Cheng & Michal, Guillaume & Venton, Philip, 2014. "Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state," Applied Energy, Elsevier, vol. 126(C), pages 56-68.
    17. Wang, Fu & Zhao, Jun & Zhang, Houcheng & Miao, He & Zhao, Jiapei & Wang, Jiatang & Yuan, Jinliang & Yan, Jinyue, 2018. "Efficiency evaluation of a coal-fired power plant integrated with chilled ammonia process using an absorption refrigerator," Applied Energy, Elsevier, vol. 230(C), pages 267-276.
    18. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    19. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    20. Elfarra, Barakat & Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2024. "The impact of energy security, energy mix, technological advancement, trade openness, and political stability on energy efficiency: Evidence from Arab countries," Energy, Elsevier, vol. 295(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.