IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006342.html
   My bibliography  Save this article

Evaluating the efficiency and cost-effectiveness of RPB-based CO2 capture: A comprehensive approach to simultaneous design and operating condition optimization

Author

Listed:
  • Jung, Howoun
  • Park, Nohjin
  • Lee, Jay H.

Abstract

Despite ongoing global initiatives to reduce CO2 emissions, implementing large-scale CO2 capture using amine solvents is fraught with economic uncertainties and technical hurdles. The Rotating Packed Bed (RPB) presents a promising alternative to traditional packed towers, offering compact design and adaptability. Nonetheless, scaling RPB processes to an industrial level is challenging due to the nascent nature of its application. The complexity of designing RPB units, setting operating conditions, and evaluating process performance adds layers of difficulty to the adoption of RPB-based systems in industries. This study introduces an optimization-driven design and evaluation for CO2 capture processes utilizing RPB columns. By employing detailed process simulation, we aim to concurrently optimize unit design and operating parameters, underscoring its advantage over conventional sequential approaches. Our process design method integrates heuristic design recommendations as constraints, resulting in 9.4% to 12.7% cost savings compared to conventional sequential design methods. Furthermore, our comprehensive process-level analysis reveals that using concentrated MEA solvent can yield total cost savings of 13.4% to 25.0% compared to the standard 30 wt% MEA solvent. Additionally, the RPB unit can deliver an 8.5 to 23.6 times reduction in packing volume. While the commercial-scale feasibility of RPB technology has been established, the advancement of this field hinges on acquiring a broader and more robust dataset from commercial-scale implementations. Employing strategic methods like modularization could significantly reduce the entry barriers for CO2 capture projects, facilitating their broader adoption and implementation.

Suggested Citation

  • Jung, Howoun & Park, Nohjin & Lee, Jay H., 2024. "Evaluating the efficiency and cost-effectiveness of RPB-based CO2 capture: A comprehensive approach to simultaneous design and operating condition optimization," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006342
    DOI: 10.1016/j.apenergy.2024.123251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.