IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002368.html
   My bibliography  Save this article

Risk-averse bi-level planning model for maximizing renewable energy hosting capacity via empowering seasonal hydrogen storage

Author

Listed:
  • Zhou, Siyu
  • Han, Yang
  • Zalhaf, Amr S.
  • Lehtonen, Matti
  • Darwish, Mohamed M.F.
  • Mahmoud, Karar

Abstract

Renewables (i.e., solar and wind power) in the Nordic area have highly seasonal characteristics, which severely restrict the wide development of renewables since they can be excessive in summer but insufficient in winter with intermittent outputs. The conventional battery energy storage system (BESS) with short-term adjustment functionality cannot eliminate the seasonal imbalance of renewables. In this regard, a risk-based bi-level planning model is presented to maximize the hosting capacity (HC) of renewables through configuring seasonal hydrogen storage (SHS) and BESS. Specifically, the upper level applies a multi-objective scheme to maximize HC and minimize the investment cost simultaneously. In turn, the lower level is driven by maximizing the profits of the distribution system operator (DSO) with the implementation of price-based demand response (PBDR). Due to forecasting errors of renewables and load resulting from intermittent output and random behaviors, a stochastic programming (SP) method is developed to address and adapt multiple uncertain fluctuations. Moreover, the conditional value-at-risk (CVaR) is introduced to measure the effect of the risks raised by multiple uncertainties on system operation. Finally, numerical studies are employed to verify the effectiveness of the proposed model. Compared to the cases without considering PBDR and SHS, the total renewable energy HC in the proposed model is increased by 2.30 MW and 0.37 MW, respectively, while the yearly cost benefit of DSO is enhanced by 28063.2 US$ and 17823.7 US$, respectively. The promising results demonstrate the empowerment of SHS can promote the cross-seasonal consumption of renewables, effectively maximizing the HC and improving the economic operation of distribution systems.

Suggested Citation

  • Zhou, Siyu & Han, Yang & Zalhaf, Amr S. & Lehtonen, Matti & Darwish, Mohamed M.F. & Mahmoud, Karar, 2024. "Risk-averse bi-level planning model for maximizing renewable energy hosting capacity via empowering seasonal hydrogen storage," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002368
    DOI: 10.1016/j.apenergy.2024.122853
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.