IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017828.html
   My bibliography  Save this article

Agrivoltaic arrays can maintain semi-arid grassland productivity and extend the seasonality of forage quality

Author

Listed:
  • Sturchio, Matthew A.
  • Kannenberg, Steven A.
  • Knapp, Alan K.

Abstract

The co-location of photovoltaic energy generation and agricultural land use (Agrivoltaics, AV) has become increasingly popular in recent years. Although the benefits of AV in croplands have great promise, the development of AV systems has primarily occurred in former grasslands and sites now managed as grasslands, because of their relatively flat topography and consistently high solar irradiation. Evidence is accumulating that grassland productivity can be maintained within solar arrays, but how grassland productivity responds to grazing within solar arrays is largely unknown, despite the prevalence of grazing as a vegetation management option. Here, we report the results of a study aimed at quantifying how a semi-arid C3 grassland growing beneath an AV system in Colorado (USA) responded to simulated grazing treatments (canopy removal in June or July). In the absence of simulated grazing, there were no differences between aboveground primary production in the AV grassland vs. an adjacent control grassland. However, simulated grazing in June and July had a compensatory effect and, in some cases, annual productivity exceeded that in the control grassland. Additionally, we found that simulated grazing increased forage protein content later into the growing season compared to un-grazed AV and control sites. Overall, our results indicate that grazing within a grassland AV array is unlikely to negatively impact forage production, and that forage quality in this semi-arid region may even be increased later into the growing season with grazing.

Suggested Citation

  • Sturchio, Matthew A. & Kannenberg, Steven A. & Knapp, Alan K., 2024. "Agrivoltaic arrays can maintain semi-arid grassland productivity and extend the seasonality of forage quality," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017828
    DOI: 10.1016/j.apenergy.2023.122418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    2. Dinesh, Harshavardhan & Pearce, Joshua M., 2016. "The potential of agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 299-308.
    3. Randle-Boggis, R.J. & White, P.C.L. & Cruz, J. & Parker, G. & Montag, H. & Scurlock, J.M.O. & Armstrong, A., 2020. "Realising co-benefits for natural capital and ecosystem services from solar parks: A co-developed, evidence-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    4. James McCall & James Macdonald & Robin Burton & Jordan Macknick, 2023. "Vegetation Management Cost and Maintenance Implications of Different Ground Covers at Utility-Scale Solar Sites," Sustainability, MDPI, vol. 15(7), pages 1-26, March.
    5. Blaydes, H. & Potts, S.G. & Whyatt, J.D. & Armstrong, A., 2021. "Opportunities to enhance pollinator biodiversity in solar parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Semeraro, Teodoro & Scarano, Aurelia & Santino, Angelo & Emmanuel, Rohinton & Lenucci, Marcello, 2022. "An innovative approach to combine solar photovoltaic gardens with agricultural production and ecosystem services," Ecosystem Services, Elsevier, vol. 56(C).
    2. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    3. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    5. Hayibo, Koami Soulemane & Pearce, Joshua M., 2023. "Vertical free-swinging photovoltaic racking energy modeling: A novel approach to agrivoltaics," Renewable Energy, Elsevier, vol. 218(C).
    6. Hsiao, Yao-Jen & Chen, Jyun-Long & Huang, Cheng-Ting, 2021. "What are the challenges and opportunities in implementing Taiwan's aquavoltaics policy? A roadmap for achieving symbiosis between small-scale aquaculture and photovoltaics," Energy Policy, Elsevier, vol. 153(C).
    7. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    8. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
    9. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    10. Willockx, Brecht & Reher, Thomas & Lavaert, Cas & Herteleer, Bert & Van de Poel, Bram & Cappelle, Jan, 2024. "Design and evaluation of an agrivoltaic system for a pear orchard," Applied Energy, Elsevier, vol. 353(PB).
    11. Chelsea Schelly & Don Lee & Elise Matz & Joshua M. Pearce, 2021. "Applying a Relationally and Socially Embedded Decision Framework to Solar Photovoltaic Adoption: A Conceptual Exploration," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    12. Anna Codemo & Ambra Barbini & Ahi Mantouza & Anastasios Bitziadis & Rossano Albatici, 2023. "Integration of Public Perception in the Assessment of Licensed Solar Farms: A Case Study in Greece," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    13. Li, Changsheng & Wang, Haiyu & Miao, Hong & Ye, Bin, 2017. "The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China," Applied Energy, Elsevier, vol. 190(C), pages 204-212.
    14. Safat Dipta, Shahriyar & Schoenlaub, Jean & Habibur Rahaman, Md & Uddin, Ashraf, 2022. "Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses," Applied Energy, Elsevier, vol. 328(C).
    15. Zbigniew Brodziński & Katarzyna Brodzińska & Mikołaj Szadziun, 2021. "Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland," Energies, MDPI, vol. 14(8), pages 1-17, April.
    16. Javier Padilla & Carlos Toledo & Rodolfo López-Vicente & Raquel Montoya & José-Ramón Navarro & José Abad & Antonio Urbina, 2021. "Passive Heating and Cooling of Photovoltaic Greenhouses Including Thermochromic Materials," Energies, MDPI, vol. 14(2), pages 1-22, January.
    17. Pascaris, Alexis S., 2021. "Examining existing policy to inform a comprehensive legal framework for agrivoltaics in the U.S," Energy Policy, Elsevier, vol. 159(C).
    18. Varo-Martínez, M. & Fernández-Ahumada, L.M. & Ramírez-Faz, J.C. & Ruiz-Jiménez, R. & López-Luque, R., 2024. "Methodology for the estimation of cultivable space in photovoltaic installations with dual-axis trackers for their reconversion to agrivoltaic plants," Applied Energy, Elsevier, vol. 361(C).
    19. Jonghan Ko & Jaeil Cho & Jinsil Choi & Chang-Yong Yoon & Kyu-Nam An & Jong-Oh Ban & Dong-Kwan Kim, 2021. "Simulation of Crop Yields Grown under Agro-Photovoltaic Panels: A Case Study in Chonnam Province, South Korea," Energies, MDPI, vol. 14(24), pages 1-16, December.
    20. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.