IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923013685.html
   My bibliography  Save this article

Predicting PEMFC performance from a volumetric image of catalyst layer structure using pore network modeling

Author

Listed:
  • Sadeghi, Mohammad Amin
  • Khan, Zohaib Atiq
  • Agnaou, Mehrez
  • Hu, Leiming
  • Litster, Shawn
  • Kongkanand, Anusorn
  • Padgett, Elliot
  • Muller, David A.
  • Friscic, Tomislav
  • Gostick, Jeff

Abstract

A pore-scale model of a PEMFC cathode catalyst layer was developed using the pore network approach and used to predict polarization behavior. A volumetric image of a PEMFC catalyst layer was obtained using FIB-SEM with 4 nm resolution in all 3 directions. The original image only differentiated between solid and void, so a simple but effective algorithm was developed to insert tightly packed, but non-overlapping carbon spheres into the solid phase, which were then decorated with catalyst sites. The resultant image was a 4-phase image containing void, ionomer, carbon, and catalyst, each in proportion to the known Pt loading, carbon-to-ionomer ratio, and porosity. A multiphase pore network model was extracted from this image, and multiphysics simulations were conducted to predict the polarization behavior of an operating cell. It was shown that not only can beginning of life polarization performance be predicted with minimal fitting parameters, but degraded performance 30 k cycles was also well captured with no additional fitting. This latter result was accomplished by deleting catalyst sites from the network in proportion to the experimentally observed distribution of electrochemical surface area loss, obtained from TEM image of catalyst loading. The model included partitioning of oxygen into the ionomer phase, explicitly incorporating the oxygen transport resistance which dominates cell performance at higher current density. Although Knudsen diffusion is present at the scales present (<100nm), it represented a negligible fraction of the total transport resistance, which was dominated by the low solubility and slow diffusivity in the ionomer phase. This work showed that the performance of a typical PEMFC is highly dependent on the structural details of the catalyst layer, to the extent that polarization curves can be well predicted by direct inspection of an image of the catalyst layer. This work paves the way for a deeper understanding of the structure-performance relationship in these complex materials and the search for optimized catalyst layer designs.

Suggested Citation

  • Sadeghi, Mohammad Amin & Khan, Zohaib Atiq & Agnaou, Mehrez & Hu, Leiming & Litster, Shawn & Kongkanand, Anusorn & Padgett, Elliot & Muller, David A. & Friscic, Tomislav & Gostick, Jeff, 2024. "Predicting PEMFC performance from a volumetric image of catalyst layer structure using pore network modeling," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013685
    DOI: 10.1016/j.apenergy.2023.122004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.