IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v352y2023ics0306261923013053.html
   My bibliography  Save this article

Evaluation of floating wind turbine substructure designs by using long-term dynamic optimization

Author

Listed:
  • Zhou, Shengtao
  • Li, Chao
  • Xiao, Yiqing
  • Wang, Xiaolu
  • Xiang, Wenyuan
  • Sun, Qing

Abstract

The substructure design plays an important role in the capital expenditure as well as the dynamic performance of floating wind turbines (FWTs). To determine the most cost-effective hull shape and mooring configuration from various design concepts, this paper proposes an evaluation methodology based on long-term dynamic optimization. To make the long-term dynamic performance assessment computationally affordable in the iterative optimization process, the FWT responses are approximated by a Kriging surrogate model, which is established via regression analysis between representative met-ocean parameters and the corresponding short-term responses. The short-term responses in stochastic wind and waves are simulated by an efficient reduced-order model (ROM) with eight degrees of freedom (DoFs). The Kriging model is employed to derive the long-term performance indicators, e.g. the lifetime accumulative fatigue damage at tower base and fairleads, the peak platform motion and nacelle acceleration. The model effectiveness is confirmed by the verification campaign against OpenFAST. Afterwards, this model is implemented into a multi-objective optimization framework that aims to find out the Pareto optimal designs that have the best trade-off between long-term dynamic performance and manufacturing cost. The NSGA-II algorithm is adopted to explore the substructure design space, with the consideration of constraints related to the inherent properties as well as the dynamic performance of structures. This methodology is applied to two typical semi-submersible FWTs: the Y-shaped and the square-shaped concept. By comparing their Pareto fronts, it is found that the square-shaped semi-submersible is expected to be a more favourable substructure for our case study. Under the same level of manufacturing cost, the tower base fatigue of square-shaped concept is mostly 30%–50% lower than that of the Y-shaped. Hydrodynamics is the main cause of the fatigue difference between the two concepts. This work provides a decision basis on which FWT substructure design is employed as input to the detail design stage.

Suggested Citation

  • Zhou, Shengtao & Li, Chao & Xiao, Yiqing & Wang, Xiaolu & Xiang, Wenyuan & Sun, Qing, 2023. "Evaluation of floating wind turbine substructure designs by using long-term dynamic optimization," Applied Energy, Elsevier, vol. 352(C).
  • Handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013053
    DOI: 10.1016/j.apenergy.2023.121941
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Shengtao & Li, Chao & Xiao, Yiqing & Cheng, Po Wen, 2020. "Importance of platform mounting orientation of Y-shaped semi-submersible floating wind turbines: A case study by using surrogate models," Renewable Energy, Elsevier, vol. 156(C), pages 260-278.
    2. Castro-Santos, Laura & Filgueira-Vizoso, Almudena & Carral-Couce, Luis & Formoso, José Ángel Fraguela, 2016. "Economic feasibility of floating offshore wind farms," Energy, Elsevier, vol. 112(C), pages 868-882.
    3. Laura, Castro-Santos & Vicente, Diaz-Casas, 2014. "Life-cycle cost analysis of floating offshore wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 41-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shamsan Alsubal & Wesam Salah Alaloul & Eu Lim Shawn & M. S. Liew & Pavitirakumar Palaniappan & Muhammad Ali Musarat, 2021. "Life Cycle Cost Assessment of Offshore Wind Farm: Kudat Malaysia Case," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    2. Judge, Frances & McAuliffe, Fiona Devoy & Sperstad, Iver Bakken & Chester, Rachel & Flannery, Brian & Lynch, Katie & Murphy, Jimmy, 2019. "A lifecycle financial analysis model for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 370-383.
    3. Chancham, Chana & Waewsak, Jompob & Gagnon, Yves, 2017. "Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand," Energy, Elsevier, vol. 139(C), pages 706-731.
    4. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    5. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    6. Caputo, Antonio C. & Federici, Alessandro & Pelagagge, Pacifico M. & Salini, Paolo, 2023. "Offshore wind power system economic evaluation framework under aleatory and epistemic uncertainty," Applied Energy, Elsevier, vol. 350(C).
    7. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    8. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    9. Romanic, Djordje & Parvu, Dan & Refan, Maryam & Hangan, Horia, 2018. "Wind and tornado climatologies and wind resource modelling for a modern development situated in “Tornado Alley”," Renewable Energy, Elsevier, vol. 115(C), pages 97-112.
    10. Pacheco, A. & Gorbeña, E. & Sequeira, C. & Jerez, S., 2017. "An evaluation of offshore wind power production by floatable systems: A case study from SW Portugal," Energy, Elsevier, vol. 131(C), pages 239-250.
    11. Weigell, Jürgen & Jahn, Carlos, 2021. "Literature review of installation logistics for floating offshore wind turbines," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 599-622, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    12. Laura Castro-Santos & Almudena Filgueira-Vizoso, 2019. "A Software for Calculating the Economic Aspects of Floating Offshore Renewable Energies," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
    13. Sarker, Bhaba R. & Faiz, Tasnim Ibn, 2016. "Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy," Renewable Energy, Elsevier, vol. 85(C), pages 104-113.
    14. Aquila, Giancarlo & Coelho, Eden de Oliveira Pinto & Bonatto, Benedito Donizeti & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2021. "Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil," Energy, Elsevier, vol. 226(C).
    15. Walgern, Julia & Peters, Lennart & Madlener, Reinhard, 2017. "Economic Evaluation of Maintenance Strategies for Offshore Wind Turbines Based on Condition Monitoring Systems," FCN Working Papers 8/2017, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    16. Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    17. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    18. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J., 2022. "Operation and maintenance for floating wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    19. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    20. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.