IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923009741.html
   My bibliography  Save this article

Comprehensive analysis of thermal runaway and rupture of lithium-ion batteries under mechanical abuse conditions

Author

Listed:
  • Chen, Haodong
  • Kalamaras, Evangelos
  • Abaza, Ahmed
  • Tripathy, Yashraj
  • Page, Jason
  • Barai, Anup

Abstract

Sidewall rupture of lithium-ion batteries plays an important role in thermal runaway (TR) propagation because flame burst from the side of cell can directly heat adjacent cells. However, the understanding of sidewall rupture in high specific energy cells under mechanical abuse conditions remains limited. In this work, nail penetration is adopted as a trigger method of TR of 21700-format cylindrical cells with high specific energy (257.0 W∙h/kg). The effects of test parameters including nail diameter, nail speed, penetrating location, penetrating depth, and state of charge on likelihood and severity of thermal runaway and sidewall rupture behaviour were investigated. A series of equipment including high-definition cameras, thermal imaging camera, X-ray computed tomography (CT), cycler and electronic balance were adopted to reveal the behaviour and the mechanism of TR and sidewall rupture. Discussion on CT scan and fire behaviour provides new perspectives for understanding sidewall rupture and TR mechanisms in high specific energy cells. The results show that the mean mass loss ratio of the cell with 100% SoC is greater than 45% under each test condition, and the maximum of them is as high as 62.5% when penetrating off-centre from the cell bottom and with a penetrating depth of 10 mm. The likelihood of sidewall rupture increases with the increasing nail speed, nail diameter, penetrating depth and state of charge when penetrating from the top cover of the cell, but it is little affected by the penetrating depth and nail diameter for penetrating from the bottom of the cell. For the first time such a relationship is presented. The root-cause analysis for the sidewall rupture of the cell has been discussed, which highlights the three key factors, including the casing strength, the internal pressure, and the opening area of the venting disk.

Suggested Citation

  • Chen, Haodong & Kalamaras, Evangelos & Abaza, Ahmed & Tripathy, Yashraj & Page, Jason & Barai, Anup, 2023. "Comprehensive analysis of thermal runaway and rupture of lithium-ion batteries under mechanical abuse conditions," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009741
    DOI: 10.1016/j.apenergy.2023.121610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Xuning & He, Xiangming & Ouyang, Minggao & Lu, Languang & Wu, Peng & Kulp, Christian & Prasser, Stefan, 2015. "Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery," Applied Energy, Elsevier, vol. 154(C), pages 74-91.
    2. Zhao, Rui & Liu, Jie & Gu, Junjie, 2017. "A comprehensive study on Li-ion battery nail penetrations and the possible solutions," Energy, Elsevier, vol. 123(C), pages 392-401.
    3. Liu, Binghe & Yin, Sha & Xu, Jun, 2016. "Integrated computation model of lithium-ion battery subject to nail penetration," Applied Energy, Elsevier, vol. 183(C), pages 278-289.
    4. Ruiz, V. & Pfrang, A. & Kriston, A. & Omar, N. & Van den Bossche, P. & Boon-Brett, L., 2018. "A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1427-1452.
    5. Liu, Lishuo & Feng, Xuning & Zhang, Mingxuan & Lu, Languang & Han, Xuebing & He, Xiangming & Ouyang, Minggao, 2020. "Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. JiYang Xu & Jian Ma & Xuan Zhao & Hao Chen & Bin Xu & XueQin Wu, 2020. "Detection Technology for Battery Safety in Electric Vehicles: A Review," Energies, MDPI, vol. 13(18), pages 1-19, September.
    3. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    4. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    5. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).
    6. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.
    8. Huang, Zonghou & Zhao, Chunpeng & Li, Huang & Peng, Wen & Zhang, Zheng & Wang, Qingsong, 2020. "Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes," Energy, Elsevier, vol. 205(C).
    9. Chen, Jie & Ren, Dongsheng & Hsu, Hungjen & Wang, Li & He, Xiangming & Zhang, Caiping & Feng, Xuning & Ouyang, Minggao, 2021. "Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model," Applied Energy, Elsevier, vol. 295(C).
    10. Lin, C. & Burggräf, P. & Liu, L. & Adlon, T. & Mueller, K. & Beyer, M. & Xu, T. & Kammerer, V. & Hu, J. & Liu, S. & Wang, F., 2023. "“Deep-Dive analysis of the latest Lithium-Ion battery safety testing standards and regulations in Germany and China”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Li, Honggang & Zhou, Dian & Zhang, Meihe & Liu, Binghe & Zhang, Chao, 2023. "Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse," Energy, Elsevier, vol. 263(PE).
    12. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    13. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    14. Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Huang, Zonghou & Shen, Ting & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode," Energy, Elsevier, vol. 239(PA).
    16. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    17. David Marcos & Maitane Garmendia & Jon Crego & José Antonio Cortajarena, 2021. "Functional Safety BMS Design Methodology for Automotive Lithium-Based Batteries," Energies, MDPI, vol. 14(21), pages 1-19, October.
    18. Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
    19. Liu, Tong & Tao, Changfa & Wang, Xishi, 2020. "Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules," Applied Energy, Elsevier, vol. 267(C).
    20. Jin, Changyong & Sun, Yuedong & Wang, Huaibin & Zheng, Yuejiu & Wang, Shuyu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Wang, Hewu & Ouyang, Minggao, 2022. "Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.