IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923008292.html
   My bibliography  Save this article

Comparison of the characteristics of compressed air energy storage in dome-shaped and horizontal aquifers based on the Pittsfield aquifer field test

Author

Listed:
  • Sun, Dongmei
  • Chu, Zhubin
  • Chen, Wenyuan
  • Feng, Ping
  • Zhang, Jiaxin

Abstract

Most studies have suggested that aquifers with anticlinal structures are the most favorable structures for compressed air energy storage (CAES) in aquifers because of their trapping ability, but this limits the potential locations for CAES plants, as horizontal aquifers are very common only in offshore areas rich in wind power. The comparison of the characteristics of CAES in dome-shaped and horizontal aquifers can help in understanding the quantitative differences between them. In this study, based on Pittsfield aquifer field test strata and parameters, the characteristics of CAES in dome-shaped and horizontal aquifers were investigated using a numerical simulation method by establishing two comparable conceptual models of a dome-shaped aquifer and a horizontal aquifer. Reasonable matches between the monitored data and simulated results were obtained for the initial air bubble development period of the Pittsfield aquifer field test. Comparisons of the initial air bubble, air cycling performance and energy recovery efficiency were carried out with the same calculation settings for the dome-shaped and horizontal aquifers. In the initial air bubble development period, when the same air volume was injected into the dome-shaped and horizontal aquifers, the radius of the air–water interface in the horizontal aquifer was 16.7% larger than that in the dome-shaped aquifer. In the air cycling period, an isothermal cycle type with a constant injection and production air pressure was designed. The energy recovery efficiency of CAES in aquifers is calculated in terms of the concept of exergy. In the case of isothermal compressor work and ignoring the energy loss in the compressor system, the energy recovery efficiency of the horizontal aquifer can reach approximately 80% of that in the dome-shaped aquifer. The effects of wellbore injection/production length and circulation mode on the performance of CAES in both aquifers were investigated. Wellbore injection/production length has obvious impacts on air mass flow rates during initial air bubble development and subsequent cycling, and a longer wellbore injection/production length can provide greater capacity. A comparison between the daily and weekly circulation periods in the dome-shaped and horizontal aquifers showed that the daily circulation has an efficiency advantage at the same energy storage scale, and the energy recovery efficiency of the horizontal aquifer in the weekly circulation can reach approximately 74% of that of the dome-shaped aquifer. In addition, a constant flow rate injection/production gas daily cycle mode was investigated, and the results showed that this mode has higher energy recovery efficiency than the constant pressure cycle mode, and the horizontal aquifer can reach 88.39% of the efficiency of the dome-shaped aquifer. The comparison of the characteristics of CAES in dome-shaped and horizontal aquifers shows that horizontal aquifers may be a potential choice for the storage media of CAES in the case that there are no suitable aquifers with anticlinal structures in offshore areas.

Suggested Citation

  • Sun, Dongmei & Chu, Zhubin & Chen, Wenyuan & Feng, Ping & Zhang, Jiaxin, 2023. "Comparison of the characteristics of compressed air energy storage in dome-shaped and horizontal aquifers based on the Pittsfield aquifer field test," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008292
    DOI: 10.1016/j.apenergy.2023.121465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923008292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yi & Liu, Yaning & Li, Yi & Hu, Bin & Gai, Peng, 2023. "Potential influences of leakage through a high permeability path on shallow aquifers in compressed air energy storage in aquifers," Renewable Energy, Elsevier, vol. 209(C), pages 661-676.
    2. Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
    3. Guo, Chaobin & Li, Cai & Zhang, Keni & Cai, Zuansi & Ma, Tianran & Maggi, Federico & Gan, Yixiang & El-Zein, Abbas & Pan, Zhejun & Shen, Luming, 2021. "The promise and challenges of utility-scale compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 286(C).
    4. Li, Yi & Yu, Hao & Li, Yi & Luo, Xian & Liu, Yinjiang & Zhang, Guijin & Tang, Dong & Liu, Yaning, 2023. "Full cycle modeling of inter-seasonal compressed air energy storage in aquifers," Energy, Elsevier, vol. 263(PD).
    5. Guo, Chaobin & Pan, Lehua & Zhang, Keni & Oldenburg, Curtis M. & Li, Cai & Li, Yi, 2016. "Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant," Applied Energy, Elsevier, vol. 181(C), pages 342-356.
    6. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    7. Bennett, Jeffrey A. & Fitts, Jeffrey P. & Clarens, Andres F., 2022. "Compressed air energy storage capacity of offshore saline aquifers using isothermal cycling," Applied Energy, Elsevier, vol. 325(C).
    8. Guo, Chaobin & Zhang, Keni & Li, Cai & Wang, Xiaoyu, 2016. "Modelling studies for influence factors of gas bubble in compressed air energy storage in aquifers," Energy, Elsevier, vol. 107(C), pages 48-59.
    9. Jidai Wang & Kunpeng Lu & Lan Ma & Jihong Wang & Mark Dooner & Shihong Miao & Jian Li & Dan Wang, 2017. "Overview of Compressed Air Energy Storage and Technology Development," Energies, MDPI, vol. 10(7), pages 1-22, July.
    10. Guo, Chaobin & Zhang, Keni & Pan, Lehua & Cai, Zuansi & Li, Cai & Li, Yi, 2017. "Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 203(C), pages 948-958.
    11. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    2. Li, Yi & Yu, Hao & Li, Yi & Luo, Xian & Liu, Yinjiang & Zhang, Guijin & Tang, Dong & Liu, Yaning, 2023. "Full cycle modeling of inter-seasonal compressed air energy storage in aquifers," Energy, Elsevier, vol. 263(PD).
    3. Li, Yi & Liu, Yaning & Hu, Bin & Li, Yi & Dong, Jiawei, 2020. "Numerical investigation of a novel approach to coupling compressed air energy storage in aquifers with geothermal energy," Applied Energy, Elsevier, vol. 279(C).
    4. Guo, Chaobin & Li, Cai & Zhang, Keni & Cai, Zuansi & Ma, Tianran & Maggi, Federico & Gan, Yixiang & El-Zein, Abbas & Pan, Zhejun & Shen, Luming, 2021. "The promise and challenges of utility-scale compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 286(C).
    5. Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
    6. Li, Yi & Liu, Yaning & Li, Yi & Hu, Bin & Gai, Peng, 2023. "Potential influences of leakage through a high permeability path on shallow aquifers in compressed air energy storage in aquifers," Renewable Energy, Elsevier, vol. 209(C), pages 661-676.
    7. Li, Yi & Yu, Hao & Xiao, Yanling & Li, Yi & Liu, Yinjiang & Luo, Xian & Tang, Dong & Zhang, Guijin & Liu, Yaning, 2023. "Numerical verification on the feasibility of compressed carbon dioxide energy storage in two aquifers," Renewable Energy, Elsevier, vol. 207(C), pages 743-764.
    8. Li, Yi & Yu, Hao & Tang, Dong & Li, Yi & Zhang, Guijin & Liu, Yaning, 2022. "A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods," Renewable Energy, Elsevier, vol. 187(C), pages 1130-1153.
    9. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Obara, Shin'ya, 2023. "Energy storage device based on a hybrid system of a CO2 heat pump cycle and a CO2 hydrate heat cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    11. Li, Yi & Yu, Hao & Li, Yi & Liu, Yaning & Zhang, Guijin & Tang, Dong & Jiang, Zhongming, 2020. "Numerical study on the hydrodynamic and thermodynamic properties of compressed carbon dioxide energy storage in aquifers," Renewable Energy, Elsevier, vol. 151(C), pages 1318-1338.
    12. Guo, Chaobin & Zhang, Keni & Pan, Lehua & Cai, Zuansi & Li, Cai & Li, Yi, 2017. "Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 203(C), pages 948-958.
    13. Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
    14. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    15. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    16. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    17. Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).
    18. Moez Krichen & Yasir Basheer & Saeed Mian Qaisar & Asad Waqar, 2023. "A Survey on Energy Storage: Techniques and Challenges," Energies, MDPI, vol. 16(5), pages 1-29, February.
    19. Luo, Xing & Dooner, Mark & He, Wei & Wang, Jihong & Li, Yaowang & Li, Decai & Kiselychnyk, Oleh, 2018. "Feasibility study of a simulation software tool development for dynamic modelling and transient control of adiabatic compressed air energy storage with its electrical power system applications," Applied Energy, Elsevier, vol. 228(C), pages 1198-1219.
    20. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.