IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225007352.html
   My bibliography  Save this article

A study on thermodynamic coupling in dynamic injection and production processes of compressed air energy storage

Author

Listed:
  • Huang, Jun
  • Ge, Xinbo
  • Ma, Hongling
  • Zhao, Tongbin
  • Li, Yinping
  • Shi, Xilin

Abstract

Energy storage, as a pivotal technology supporting the energy revolution, is a strategic emerging industry in China, poised for rapid and substantial growth. Within salt cavern compressed air energy storage systems, the flow and heat transfer of compressed air in the wellbore are essential for accurately predicting the thermodynamic behavior within the cavern. This study focuses on the thermal coupling effects within the wellbore-cavern system, employing an interdisciplinary approach to develop a wellbore-cavern airflow thermal coupling model. The model comprehensively accounts for the thermodynamic properties of real gases and successfully predicts the spatiotemporal variations and thermodynamic responses of flow and thermal parameters by integrating characteristic equations—such as Reynolds number, Prandtl number, Grashof number, and Nusselt number—with one-dimensional Euler motion differential equations and both steady-state and transient heat conduction differential equations. The study reveals that as the length of the wellbore increases, the outlet pressure and temperature rise significantly, leading to corresponding increases in pressure, temperature, and wall temperature within the cavern. Under varying gas injection mass flow rates, the thermodynamic parameters of the wellbore and cavern exhibit significant changes, with injection temperature having a particularly pronounced effect. The research findings provide scientific theoretical support for the efficient, stable, and safe operation of salt cavern energy storage systems.

Suggested Citation

  • Huang, Jun & Ge, Xinbo & Ma, Hongling & Zhao, Tongbin & Li, Yinping & Shi, Xilin, 2025. "A study on thermodynamic coupling in dynamic injection and production processes of compressed air energy storage," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007352
    DOI: 10.1016/j.energy.2025.135093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225007352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. He, Wei & Luo, Xing & Evans, David & Busby, Jonathan & Garvey, Seamus & Parkes, Daniel & Wang, Jihong, 2017. "Exergy storage of compressed air in cavern and cavern volume estimation of the large-scale compressed air energy storage system," Applied Energy, Elsevier, vol. 208(C), pages 745-757.
    2. Kim, Hyung-Mok & Rutqvist, Jonny & Ryu, Dong-Woo & Choi, Byung-Hee & Sunwoo, Choon & Song, Won-Kyong, 2012. "Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance," Applied Energy, Elsevier, vol. 92(C), pages 653-667.
    3. Sun, Dongmei & Chu, Zhubin & Chen, Wenyuan & Feng, Ping & Zhang, Jiaxin, 2023. "Comparison of the characteristics of compressed air energy storage in dome-shaped and horizontal aquifers based on the Pittsfield aquifer field test," Applied Energy, Elsevier, vol. 348(C).
    4. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    5. Haiqing Wu & Bing Bai & Xiaochun Li & Mingze Liu & Yuanyuan He, 2017. "An explicit finite difference model for prediction of wellbore pressure and temperature distribution in CO 2 geological sequestration," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(2), pages 353-369, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Wei & Jiao, Keqing & Jin, Xu & Liu, Zhongyan & Zhang, Xiaosong, 2025. "Performance analysis of a novel solar-assisted liquid CO2 energy storage system with flexible cooling, heating and power outputs: Energy, exergy, economic, and environmental aspects," Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Yue & Zhang, Guohua & Wang, Xinjin & Zhang, Guoyin & Xiong, Feng & Tang, Zhicheng & Hua, Dongjie, 2025. "Load-sharing characteristics of lined rock caverns of compressed air energy storage system: A theoretical analysis," Applied Energy, Elsevier, vol. 388(C).
    2. Li, Yi & Zhou, Qian & Yu, Hao & Li, Yi & Liu, Yinjiang & Huang, Leqing & Tang, Dong & Zhang, Guijin & Liu, Yaning, 2025. "Coupled nonlinear wellbore multiphase flow and thermo-hydro-mechanical analysis of compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 377(PA).
    3. Zhang, Weifeng & Ding, Jialu & Yin, Suzhen & Zhang, Fangyuan & Zhang, Yao & Liu, Zhan, 2024. "Thermo-economic optimization of an artificial cavern compressed air energy storage with CO2 pressure stabilizing unit," Energy, Elsevier, vol. 294(C).
    4. Li, Yi & Xue, Ping & Li, Yi & Liu, Yaning & Wang, Jingrui & Yin, Wenjie, 2025. "Modeling underground performance of compressed air energy storage in a practical flat aquifer: Insights on the permeability effects," Energy, Elsevier, vol. 322(C).
    5. Li, Hang & Ma, Hongling & Liu, Jiang & Zhu, Shijie & Zhao, Kai & Zheng, Zhuyan & Zeng, Zhen & Yang, Chunhe, 2023. "Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China," Energy, Elsevier, vol. 281(C).
    6. Marcin Jankowski & Anna Pałac & Krzysztof Sornek & Wojciech Goryl & Maciej Żołądek & Maksymilian Homa & Mariusz Filipowicz, 2024. "Status and Development Perspectives of the Compressed Air Energy Storage (CAES) Technologies—A Literature Review," Energies, MDPI, vol. 17(9), pages 1-46, April.
    7. Chen, Long-Xiang & Hu, Peng & Sheng, Chun-Chen & Xie, Mei-Na, 2017. "A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source," Energy, Elsevier, vol. 131(C), pages 259-266.
    8. Li, Yi & Liu, Yinjiang & Yu, Hao & Luo, Xian & Li, Yi & Tang, Dong & Zhang, Guijin & Liu, Yaning, 2025. "Underground performance assessment of compressed CO2 energy storage in aquifers by thermal-hydro-mechanical coupling method," Energy, Elsevier, vol. 324(C).
    9. Gasanzade, Firdovsi & Bauer, Sebastian, 2025. "Approximating coupled power plant and geostorage simulations for compressed air energy storage in porous media," Applied Energy, Elsevier, vol. 380(C).
    10. Li, Yi & Yu, Hao & Li, Yi & Tang, Dong & Zhang, Guijin & Liu, Yaning, 2024. "Study on the applicability of compressed carbon dioxide energy storage in aquifers under different daily and weekly cycles," Renewable Energy, Elsevier, vol. 222(C).
    11. Courtois, Nicolas & Najafiyazdi, Mostafa & Lotfalian, Reza & Boudreault, Richard & Picard, Mathieu, 2021. "Analytical expression for the evaluation of multi-stage adiabatic-compressed air energy storage (A-CAES) systems cycle efficiency," Applied Energy, Elsevier, vol. 288(C).
    12. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2017. "Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems," Applied Energy, Elsevier, vol. 206(C), pages 1552-1563.
    13. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    14. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    15. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    16. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    17. He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
    18. Bassam, Ameen M. & Elminshawy, Nabil A.S. & Oterkus, Erkan & Amin, Islam, 2024. "Hybrid compressed air energy storage system and control strategy for a partially floating photovoltaic plant," Energy, Elsevier, vol. 313(C).
    19. Hasan, Nor Shahida & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Omar, Wan Zaidi Wan & Rosmin, Norzanah, 2016. "Improving power grid performance using parallel connected Compressed Air Energy Storage and wind turbine system," Renewable Energy, Elsevier, vol. 96(PA), pages 498-508.
    20. Llamas, Bernardo & Laín, Carlos & Castañeda, M. Cruz & Pous, Juan, 2018. "Mini-CAES as a reliable and novel approach to storing renewable energy in salt domes," Energy, Elsevier, vol. 144(C), pages 482-489.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.