IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920312666.html
   My bibliography  Save this article

Numerical investigation of a novel approach to coupling compressed air energy storage in aquifers with geothermal energy

Author

Listed:
  • Li, Yi
  • Liu, Yaning
  • Hu, Bin
  • Li, Yi
  • Dong, Jiawei

Abstract

Compressed air energy storage in aquifers is considered a potential large-scale energy storage technology that can balance electricity supply and demand. Inspired by geothermal energy acting as a thermal energy exporter, research on the coupled system is promising. To resolve the conflict of obtaining geothermal energy in an appropriate cyclic pressure, a novel coupled system adopting U-shaped wellbore is proposed. Focusing only on the underground process, the basic model for the coupled system is developed based on the Huntorf plant and numerical simulation is used to analyze its availability. The results show that not only is the cyclic pressure variation similar to that in the original system, but also a percentage of geothermal energy can be obtained in the coupled system. It results in higher air production temperature and more energy produced (even larger than the injection energy) than those in the original system. In addition, the impacts of air injection temperature and geothermal temperature distribution on the energy performance are investigated. It is found that relatively low air temperature is beneficial for obtaining geothermal energy, but the sustainability of the system can be influenced. The higher initial geothermal temperature distribution can help enhance energy production, because the path length and duration of heat transfer from geothermal reservoir become longer and the rate of supplementary geothermal energy flux becomes larger. The research on the proposed coupled system will help the development of efficient, economical and environmentally friendly large-scale energy storage system.

Suggested Citation

  • Li, Yi & Liu, Yaning & Hu, Bin & Li, Yi & Dong, Jiawei, 2020. "Numerical investigation of a novel approach to coupling compressed air energy storage in aquifers with geothermal energy," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312666
    DOI: 10.1016/j.apenergy.2020.115781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
    2. Wang, Sixian & Zhang, Xuelin & Yang, Luwei & Zhou, Yuan & Wang, Junjie, 2016. "Experimental study of compressed air energy storage system with thermal energy storage," Energy, Elsevier, vol. 103(C), pages 182-191.
    3. Beatrice Castellani & Elena Morini & Benedetto Nastasi & Andrea Nicolini & Federico Rossi, 2018. "Small-Scale Compressed Air Energy Storage Application for Renewable Energy Integration in a Listed Building," Energies, MDPI, vol. 11(7), pages 1-15, July.
    4. Grazzini, Giuseppe & Milazzo, Adriano, 2008. "Thermodynamic analysis of CAES/TES systems for renewable energy plants," Renewable Energy, Elsevier, vol. 33(9), pages 1998-2006.
    5. Guo, Chaobin & Pan, Lehua & Zhang, Keni & Oldenburg, Curtis M. & Li, Cai & Li, Yi, 2016. "Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant," Applied Energy, Elsevier, vol. 181(C), pages 342-356.
    6. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    7. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    8. Hartmann, Niklas & Vöhringer, O. & Kruck, C. & Eltrop, L., 2012. "Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations," Applied Energy, Elsevier, vol. 93(C), pages 541-548.
    9. Julien Mouli-Castillo & Mark Wilkinson & Dimitri Mignard & Christopher McDermott & R. Stuart Haszeldine & Zoe K. Shipton, 2019. "Inter-seasonal compressed-air energy storage using saline aquifers," Nature Energy, Nature, vol. 4(2), pages 131-139, February.
    10. Guo, Chaobin & Zhang, Keni & Li, Cai & Wang, Xiaoyu, 2016. "Modelling studies for influence factors of gas bubble in compressed air energy storage in aquifers," Energy, Elsevier, vol. 107(C), pages 48-59.
    11. Carneiro, Júlio F. & Matos, Catarina R. & van Gessel, Serge, 2019. "Opportunities for large-scale energy storage in geological formations in mainland Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 201-211.
    12. Guo, Chaobin & Zhang, Keni & Pan, Lehua & Cai, Zuansi & Li, Cai & Li, Yi, 2017. "Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 203(C), pages 948-958.
    13. Li, Yi & Yu, Hao & Li, Yi & Liu, Yaning & Zhang, Guijin & Tang, Dong & Jiang, Zhongming, 2020. "Numerical study on the hydrodynamic and thermodynamic properties of compressed carbon dioxide energy storage in aquifers," Renewable Energy, Elsevier, vol. 151(C), pages 1318-1338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yi & Yu, Hao & Tang, Dong & Li, Yi & Zhang, Guijin & Liu, Yaning, 2022. "A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods," Renewable Energy, Elsevier, vol. 187(C), pages 1130-1153.
    2. Li, Yi & Yu, Hao & Li, Yi & Luo, Xian & Liu, Yinjiang & Zhang, Guijin & Tang, Dong & Liu, Yaning, 2023. "Full cycle modeling of inter-seasonal compressed air energy storage in aquifers," Energy, Elsevier, vol. 263(PD).
    3. Zahedi, Rahim & Daneshgar, Sareh & Seraji, Mohammad Ali Nasle & Asemi, Hamidreza, 2022. "Modeling and interpretation of geomagnetic data related to geothermal sources, Northwest of Delijan," Renewable Energy, Elsevier, vol. 196(C), pages 444-450.
    4. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Obara, Shin'ya, 2023. "Energy storage device based on a hybrid system of a CO2 heat pump cycle and a CO2 hydrate heat cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Chaobin & Li, Cai & Zhang, Keni & Cai, Zuansi & Ma, Tianran & Maggi, Federico & Gan, Yixiang & El-Zein, Abbas & Pan, Zhejun & Shen, Luming, 2021. "The promise and challenges of utility-scale compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 286(C).
    2. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    3. Li, Yi & Liu, Yaning & Li, Yi & Hu, Bin & Gai, Peng, 2023. "Potential influences of leakage through a high permeability path on shallow aquifers in compressed air energy storage in aquifers," Renewable Energy, Elsevier, vol. 209(C), pages 661-676.
    4. Li, Yi & Yu, Hao & Tang, Dong & Li, Yi & Zhang, Guijin & Liu, Yaning, 2022. "A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods," Renewable Energy, Elsevier, vol. 187(C), pages 1130-1153.
    5. Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
    6. Li, Yi & Yu, Hao & Li, Yi & Luo, Xian & Liu, Yinjiang & Zhang, Guijin & Tang, Dong & Liu, Yaning, 2023. "Full cycle modeling of inter-seasonal compressed air energy storage in aquifers," Energy, Elsevier, vol. 263(PD).
    7. Guo, Chaobin & Zhang, Keni & Pan, Lehua & Cai, Zuansi & Li, Cai & Li, Yi, 2017. "Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 203(C), pages 948-958.
    8. Sun, Dongmei & Chu, Zhubin & Chen, Wenyuan & Feng, Ping & Zhang, Jiaxin, 2023. "Comparison of the characteristics of compressed air energy storage in dome-shaped and horizontal aquifers based on the Pittsfield aquifer field test," Applied Energy, Elsevier, vol. 348(C).
    9. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    10. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    11. Li, Yi & Yu, Hao & Xiao, Yanling & Li, Yi & Liu, Yinjiang & Luo, Xian & Tang, Dong & Zhang, Guijin & Liu, Yaning, 2023. "Numerical verification on the feasibility of compressed carbon dioxide energy storage in two aquifers," Renewable Energy, Elsevier, vol. 207(C), pages 743-764.
    12. Guo, Chaobin & Pan, Lehua & Zhang, Keni & Oldenburg, Curtis M. & Li, Cai & Li, Yi, 2016. "Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant," Applied Energy, Elsevier, vol. 181(C), pages 342-356.
    13. Roos, P. & Haselbacher, A., 2022. "Analytical modeling of advanced adiabatic compressed air energy storage: Literature review and new models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    14. Li, Yi & Yu, Hao & Li, Yi & Liu, Yaning & Zhang, Guijin & Tang, Dong & Jiang, Zhongming, 2020. "Numerical study on the hydrodynamic and thermodynamic properties of compressed carbon dioxide energy storage in aquifers," Renewable Energy, Elsevier, vol. 151(C), pages 1318-1338.
    15. Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
    16. Li, Peng & Hu, Qingya & Han, Zhonghe & Wang, Changxin & Wang, Runxia & Han, Xu & Wang, Yongzhen, 2022. "Thermodynamic analysis and multi-objective optimization of a trigenerative system based on compressed air energy storage under different working media and heating storage media," Energy, Elsevier, vol. 239(PD).
    17. Peng, Hao & Yang, Yu & Li, Rui & Ling, Xiang, 2016. "Thermodynamic analysis of an improved adiabatic compressed air energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 1361-1373.
    18. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    19. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    20. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.