IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v335y2023ics0306261923001253.html
   My bibliography  Save this article

A holistic model-less approach for the optimal real-time control of power electronics-dominated AC microgrids

Author

Listed:
  • Olives-Camps, J. Carlos
  • Rodríguez del Nozal, Álvaro
  • Mauricio, Juan Manuel
  • Maza-Ortega, José María

Abstract

This paper addresses the problem of optimally operating a set of grid-forming devices in an AC microgrid when a detailed network model is not available. The main aim of the approach is to maximize the power sharing of the controllable grid-forming devices and to maintain the frequency and the nodal voltages of the microgrid as close as possible to their corresponding references. The proposed control architecture is conformed by a local control layer in each grid-forming device that intends to emulate the performance of a synchronous machine and a centralized secondary controller composed of two complementary tools that coordinates the setpoints of the grid-forming devices: an online feedback optimization algorithm and an automatic generation control. The proposed method has been validated through simulations and hardware-in-the-loop tests, evidencing its good performance and robustness under different conditions.

Suggested Citation

  • Olives-Camps, J. Carlos & Rodríguez del Nozal, Álvaro & Mauricio, Juan Manuel & Maza-Ortega, José María, 2023. "A holistic model-less approach for the optimal real-time control of power electronics-dominated AC microgrids," Applied Energy, Elsevier, vol. 335(C).
  • Handle: RePEc:eee:appene:v:335:y:2023:i:c:s0306261923001253
    DOI: 10.1016/j.apenergy.2023.120761
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923001253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdi, Hamdi & Beigvand, Soheil Derafshi & Scala, Massimo La, 2017. "A review of optimal power flow studies applied to smart grids and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 742-766.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
    2. Kolasa, Piotr & Janowski, Mirosław, 2017. "Study of possibilities to store energy virtually in a grid (VESS) with the use of smart metering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1513-1517.
    3. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    4. Chen, Weidong & Wei, Pengbang, 2018. "Socially optimal deployment strategy and incentive policy for solar photovoltaic community microgrid: A case of China," Energy Policy, Elsevier, vol. 116(C), pages 86-94.
    5. Yin, Linfei & Wang, Tao & Zheng, Baomin, 2021. "Analytical adaptive distributed multi-objective optimization algorithm for optimal power flow problems," Energy, Elsevier, vol. 216(C).
    6. Gianpiero Colangelo & Gianluigi Spirto & Marco Milanese & Arturo de Risi, 2021. "Progresses in Analytical Design of Distribution Grids and Energy Storage," Energies, MDPI, vol. 14(14), pages 1-43, July.
    7. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. O., Yugeswar Reddy & J., Jithendranath & Chakraborty, Ajoy Kumar & Guerrero, Josep M., 2022. "Stochastic optimal power flow in islanded DC microgrids with correlated load and solar PV uncertainties," Applied Energy, Elsevier, vol. 307(C).
    9. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "Hybrid Gravitational Search Algorithm-Particle Swarm Optimization with Time Varying Acceleration Coefficients for large scale CHPED problem," Energy, Elsevier, vol. 126(C), pages 841-853.
    10. Liu, Youbo & Zuo, Kunyu & Liu, Xueqin (Amy) & Liu, Junyong & Kennedy, Jason M., 2018. "Dynamic pricing for decentralized energy trading in micro-grids," Applied Energy, Elsevier, vol. 228(C), pages 689-699.
    11. Norouzi, F. & Hoppe, T. & Kamp, L.M. & Manktelow, C. & Bauer, P., 2023. "Diagnosis of the implementation of smart grid innovation in The Netherlands and corrective actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    12. Zenginis, Ioannis & Vardakas, John S. & Echave, Cynthia & Morató, Moisés & Abadal, Jordi & Verikoukis, Christos V., 2017. "Cooperation in microgrids through power exchange: An optimal sizing and operation approach," Applied Energy, Elsevier, vol. 203(C), pages 972-981.
    13. Nguyen, Su & Peng, Wei & Sokolowski, Peter & Alahakoon, Damminda & Yu, Xinghuo, 2018. "Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 228(C), pages 2567-2580.
    14. Motta, Vinicius N. & Anjos, Miguel F. & Gendreau, Michel, 2024. "Survey of optimization models for power system operation and expansion planning with demand response," European Journal of Operational Research, Elsevier, vol. 312(2), pages 401-412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:335:y:2023:i:c:s0306261923001253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.