IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v331y2023ics0306261922017251.html
   My bibliography  Save this article

Enhanced solar hydrogen generation with the direct coupling of photo and thermal energy – An experimental and mechanism study

Author

Listed:
  • Lu, Buchu
  • Yan, Xiangyu
  • Liu, Qibin

Abstract

The complementary use of solar light and heat to overcome respective drawbacks, such as low solar spectral utilization in photocatalysis and light-to-heat conversion in thermochemistry has been a popular research topic. The photo-thermochemical synergy effect of solar hydrogen production with methanol steam reforming reactions using Cu/ZnO/Al2O3 catalyst is experimentally investigated in this study. Solar energy directly shines onto the surface of the catalyst, causing the synergistic effect of light and heat. Experimental results show that the photo-thermochemical reaction can reduce the reaction temperature by more than 10 °C at 188 °C compared with the thermochemical reaction, while increasing hydrogen production by 32.9%. Further mechanism studies show that hot electrons excited by the irradiation of sunlight on Cu and ZnO promote the production of the key intermediates (hydroxyl groups) in the process of the thermochemical methanol steam reforming, which can explain the increase in hydrogen yield under photo-thermochemical conditions. These findings are different from thermochemical reactions, and provide a new route for mid-and-low temperature hydrogen production.

Suggested Citation

  • Lu, Buchu & Yan, Xiangyu & Liu, Qibin, 2023. "Enhanced solar hydrogen generation with the direct coupling of photo and thermal energy – An experimental and mechanism study," Applied Energy, Elsevier, vol. 331(C).
  • Handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922017251
    DOI: 10.1016/j.apenergy.2022.120468
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922017251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Fan & Lu, Buchu & Chen, Chen & Liu, Qibin, 2021. "Exergy transfer and degeneration in thermochemical cycle reactions for hydrogen production: Novel exergy- and energy level-based methods," Energy, Elsevier, vol. 219(C).
    2. Chein, Rei-Yu & Chen, Yen-Cho & Chang, Che-Ming & Chung, J.N., 2013. "Experimental study on the performance of hydrogen production from miniature methanol–steam reformer integrated with Swiss-roll type combustor for PEMFC," Applied Energy, Elsevier, vol. 105(C), pages 86-98.
    3. Vidal, Alfonso & Gonzalez, Aurelio & Denk, Thorsten, 2020. "A 100 kW cavity-receiver reactor with an integrated two-step thermochemical cycle: Thermal performance under solar transients," Renewable Energy, Elsevier, vol. 153(C), pages 270-279.
    4. Tsuyoshi Takata & Junzhe Jiang & Yoshihisa Sakata & Mamiko Nakabayashi & Naoya Shibata & Vikas Nandal & Kazuhiko Seki & Takashi Hisatomi & Kazunari Domen, 2020. "Photocatalytic water splitting with a quantum efficiency of almost unity," Nature, Nature, vol. 581(7809), pages 411-414, May.
    5. Al Baroudi, Hisham & Awoyomi, Adeola & Patchigolla, Kumar & Jonnalagadda, Kranthi & Anthony, E.J., 2021. "A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage," Applied Energy, Elsevier, vol. 287(C).
    6. Haeussler, Anita & Abanades, Stéphane & Julbe, Anne & Jouannaux, Julien & Cartoixa, Bruno, 2020. "Solar thermochemical fuel production from H2O and CO2 splitting via two-step redox cycling of reticulated porous ceria structures integrated in a monolithic cavity-type reactor," Energy, Elsevier, vol. 201(C).
    7. Su Jae Kim & Yong In Kim & Bipin Lamichhane & Young-Hoon Kim & Yousil Lee & Chae Ryong Cho & Miyeon Cheon & Jong Chan Kim & Hu Young Jeong & Taewoo Ha & Jungdae Kim & Young Hee Lee & Seong-Gon Kim & Y, 2022. "Flat-surface-assisted and self-regulated oxidation resistance of Cu(111)," Nature, Nature, vol. 603(7901), pages 434-438, March.
    8. Daming Zhao & Yiqing Wang & Chung-Li Dong & Yu-Cheng Huang & Jie Chen & Fei Xue & Shaohua Shen & Liejin Guo, 2021. "Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting," Nature Energy, Nature, vol. 6(4), pages 388-397, April.
    9. Zhang, Yidian & Guo, Shaopeng & Tian, Zhenyu & Zhao, Yawen & Hao, Yong, 2019. "Experimental investigation of steam reforming of methanol over La2CuO4/CuZnAl-oxides nanocatalysts," Applied Energy, Elsevier, vol. 254(C).
    10. Liu, Taixiu & Bai, Zhang & Zheng, Zhimei & Liu, Qibin & Lei, Jing & Sui, Jun & Jin, Hongguang, 2019. "100 kWe power generation pilot plant with a solar thermochemical process: design, modeling, construction, and testing," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Bingqiao Xie & Roong Jien Wong & Tze Hao Tan & Michael Higham & Emma K. Gibson & Donato Decarolis & June Callison & Kondo-Francois Aguey-Zinsou & Michael Bowker & C. Richard A. Catlow & Jason Scott & , 2020. "Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    12. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    13. Kim, Taegyu & Jo, Sungkwon & Song, Young-Hoon & Lee, Dae Hoon, 2014. "Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges," Applied Energy, Elsevier, vol. 113(C), pages 1692-1699.
    14. Liu, Qibin & Hong, Hui & Yuan, Jianli & Jin, Hongguang & Cai, Ruixian, 2009. "Experimental investigation of hydrogen production integrated methanol steam reforming with middle-temperature solar thermal energy," Applied Energy, Elsevier, vol. 86(2), pages 155-162, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Buchu & Jiao, Fan & Chen, Chen & Yan, Xiangyu & Liu, Qibin, 2023. "Temperature-entropy and energy utilization diagrams for energy, exergy, and energy level analysis in solar water splitting reactions," Energy, Elsevier, vol. 284(C).
    2. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yangjie & Li, Qiang & Xuan, Yimin, 2019. "Thermal and chemical reaction performance analyses of solar thermochemical volumetric receiver/reactor with nanofluid," Energy, Elsevier, vol. 189(C).
    2. Lu, Buchu & Jiao, Fan & Chen, Chen & Yan, Xiangyu & Liu, Qibin, 2023. "Temperature-entropy and energy utilization diagrams for energy, exergy, and energy level analysis in solar water splitting reactions," Energy, Elsevier, vol. 284(C).
    3. Yaguang Li & Xianhua Bai & Dachao Yuan & Fengyu Zhang & Bo Li & Xingyuan San & Baolai Liang & Shufang Wang & Jun Luo & Guangsheng Fu, 2022. "General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Abuseada, Mostafa & Fisher, Timothy S., 2023. "Continuous solar-thermal methane pyrolysis for hydrogen and graphite production by roll-to-roll processing," Applied Energy, Elsevier, vol. 352(C).
    5. Liu, Taixiu & Liu, Qibin & Lei, Jing & Sui, Jun & Jin, Hongguang, 2018. "Solar-clean fuel distributed energy system with solar thermochemistry and chemical recuperation," Applied Energy, Elsevier, vol. 225(C), pages 380-391.
    6. Ma, Zhao & Li, Ming-Jia & He, Ya-Ling & Max Zhang, K., 2020. "Performance analysis and optimization of solar thermochemical reactor by diluting catalyst with encapsulated phase change material," Applied Energy, Elsevier, vol. 266(C).
    7. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    8. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    9. Yimeng Li & Li Yang & Huijie He & Lei Sun & Honglei Wang & Xu Fang & Yanliang Zhao & Daoyuan Zheng & Yu Qi & Zhen Li & Weiqiao Deng, 2022. "In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Jinshui Cheng & Linxiao Wu & Jingshan Luo, 2023. "Improving the photovoltage of Cu2O photocathodes with dual buffer layers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Zhang, Kai & Lau, Hon Chung & Liu, Shuyang & Li, Hangyu, 2022. "Carbon capture and storage in the coastal region of China between Shanghai and Hainan," Energy, Elsevier, vol. 247(C).
    12. Lu, J.F. & Dong, Y.X. & Wang, Y.R. & Wang, W.L. & Ding, J., 2022. "High efficient thermochemical energy storage of methane reforming with carbon dioxide in cavity reactor with novel catalyst bed under concentrated sun simulator," Renewable Energy, Elsevier, vol. 188(C), pages 361-371.
    13. Yong Liu & Mingjian Zhang & Zhuan Wang & Jiandong He & Jie Zhang & Sheng Ye & Xiuli Wang & Dongfeng Li & Heng Yin & Qianhong Zhu & Huanwang Jing & Yuxiang Weng & Feng Pan & Ruotian Chen & Can Li & Fen, 2022. "Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    15. Rahul R. Bhosale, 2023. "Recent Developments in Ceria-Driven Solar Thermochemical Water and Carbon Dioxide Splitting Redox Cycle," Energies, MDPI, vol. 16(16), pages 1-30, August.
    16. Jiang, Dongyue & Yang, Wenming & Tang, Aikun, 2016. "A refractory selective solar absorber for high performance thermochemical steam reforming," Applied Energy, Elsevier, vol. 170(C), pages 286-292.
    17. Wang, Bo & Li, Xian & Zhu, Xuancan & Wang, Yuesen & Tian, Tian & Dai, Yanjun & Wang, Chi-Hwa, 2023. "An epitrochoidal rotary reactor for solar-driven hydrogen production based on the redox cycling of ceria: Thermodynamic analysis and geometry optimization," Energy, Elsevier, vol. 270(C).
    18. Xiao Li & Lingzhi Yang & Yong Hao, 2023. "Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture," Energies, MDPI, vol. 16(20), pages 1-16, October.
    19. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922017251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.