IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v331y2023ics030626192201635x.html
   My bibliography  Save this article

Experimental investigation on the effect of vapor environment on the pattern evolutions during sessile water droplet evaporation at low pressures

Author

Listed:
  • Lin, Yuan-Qing
  • Wu, Chun-Mei
  • Li, You-Rong

Abstract

A series of experiments for water droplet evaporation into ethanol and nitrogen vapors at low pressures are carried out to investigate the influence of vapor environment on the evolution of thermal patterns induced by water droplet evaporation. Results show that when the water droplet evaporates in the ethanol vapor, the initial evaporation induces the surface fluid flows from the triple-line to the droplet apex. When the thermal flow loses stabilities, the surface temperature oscillations are shown as types of thermal waves. The transition of thermal patterns from gear-like temperature distribution, shifting multi-cells to the Bénard-Marangoni cell is captured and the wave number increases firstly, and then remains during the pattern evolutions. Reducing the initial pressure leads to an enhancement of the thermocapillary instabilities, which brings the critical time for the pattern transition forward. In the case of nitrogen environment, the transition of thermal patterns from central warmer region to the shifting multi-cells is recorded. The surface temperature in nitrogen environment is lower than that in ethanol vapor. During the whole evaporation process, the tangential temperature gradient and the normal temperature gradient alter as the variation of droplet height, and their relative magnitude determines the internal flow and the evolution of thermal patterns. Moreover, when ethanol vapor is absorbed by the water droplet, the heat of solution is released, and the solutal-Marangoni convection is induced to suppress the buoyancy flow.

Suggested Citation

  • Lin, Yuan-Qing & Wu, Chun-Mei & Li, You-Rong, 2023. "Experimental investigation on the effect of vapor environment on the pattern evolutions during sessile water droplet evaporation at low pressures," Applied Energy, Elsevier, vol. 331(C).
  • Handle: RePEc:eee:appene:v:331:y:2023:i:c:s030626192201635x
    DOI: 10.1016/j.apenergy.2022.120378
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201635X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuzhong & Yan, Min & Zhang, Liqiang & Chen, Guifang & Cui, Lin & Song, Zhanlong & Chang, Jingcai & Ma, Chunyuan, 2016. "Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery," Applied Energy, Elsevier, vol. 172(C), pages 107-117.
    2. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Yuan, Yuhang & Wang, Chun & Ye, Yintong & Huang, Yao & Qiu, Zhiqiang & Tang, Yong, 2020. "Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries," Applied Energy, Elsevier, vol. 257(C).
    2. Liu, Tong & Tao, Changfa & Wang, Xishi, 2020. "Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules," Applied Energy, Elsevier, vol. 267(C).
    3. Sun, Fangtian & Zhao, Jinzi & Fu, Lin & Sun, Jian & Zhang, Shigang, 2017. "New district heating system based on natural gas-fired boilers with absorption heat exchangers," Energy, Elsevier, vol. 138(C), pages 405-418.
    4. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Akash Samanta & Sheldon S. Williamson, 2021. "A Comprehensive Review of Lithium-Ion Cell Temperature Estimation Techniques Applicable to Health-Conscious Fast Charging and Smart Battery Management Systems," Energies, MDPI, vol. 14(18), pages 1-25, September.
    6. Feng, Yupeng & Li, Yuzhong & Cui, Lin & Yan, Lifan & Zhao, Cheng & Dong, Yong, 2019. "Cold condensing scrubbing method for fine particle reduction from saturated flue gas," Energy, Elsevier, vol. 171(C), pages 1193-1205.
    7. Liao, Weicheng & Zhang, Xiaoyue & Li, Zhen, 2022. "Experimental investigation on the performance of a boiler system with flue gas dehumidification and combustion air humidification," Applied Energy, Elsevier, vol. 323(C).
    8. Shang, Sheng & Li, Xianting & Chen, Wei & Wang, Baolong & Shi, Wenxing, 2017. "A total heat recovery system between the flue gas and oxidizing air of a gas-fired boiler using a non-contact total heat exchanger," Applied Energy, Elsevier, vol. 207(C), pages 613-623.
    9. Wang, Jingyi & Hua, Jing & Fu, Lin & Zhou, Ding, 2020. "Effect of gas nonlinearity on boilers equipped with vapor-pump (BEVP) system for flue-gas heat and moisture recovery," Energy, Elsevier, vol. 198(C).
    10. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Xu, Xinhai & Li, Wenzheng & Xu, Ben & Qin, Jiang, 2019. "Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions," Applied Energy, Elsevier, vol. 250(C), pages 404-412.
    12. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Zhu, Tingting & Li, Yan, 2023. "Experimental investigation of preheating performance of lithium-ion battery modules in electric vehicles enhanced by bending flat micro heat pipe array," Applied Energy, Elsevier, vol. 337(C).
    13. Yetik, Ozge & Karakoc, Tahir Hikmet, 2020. "A numerical study on the thermal performance of prismatic li-ion batteries for hibrid electric aircraft," Energy, Elsevier, vol. 195(C).
    14. Gang Zhao & Xiaolin Wang & Michael Negnevitsky & Hengyun Zhang & Chengjiang Li, 2022. "Performance Improvement of a Novel Trapezoid Air-Cooling Battery Thermal Management System for Electric Vehicles," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    15. Li, Changlong & Cui, Naxin & Chang, Long & Cui, Zhongrui & Yuan, Haitao & Zhang, Chenghui, 2022. "Effect of parallel connection topology on air-cooled lithium-ion battery module: Inconsistency analysis and comprehensive evaluation," Applied Energy, Elsevier, vol. 313(C).
    16. Wang, Jingyi & Hua, Jing & Fu, Lin & Wang, Zhe & Zhang, Shigang, 2019. "A theoretical fundamental investigation on boilers equipped with vapor-pump system for Flue-Gas Heat and Moisture Recovery," Energy, Elsevier, vol. 171(C), pages 956-970.
    17. Liu, Yuanzhi & Zhang, Jie, 2020. "Self-adapting J-type air-based battery thermal management system via model predictive control," Applied Energy, Elsevier, vol. 263(C).
    18. Xingxing Wang & Shengren Liu & Yujie Zhang & Shuaishuai Lv & Hongjun Ni & Yelin Deng & Yinnan Yuan, 2022. "A Review of the Power Battery Thermal Management System with Different Cooling, Heating and Coupling System," Energies, MDPI, vol. 15(6), pages 1-29, March.
    19. Young-Min Kim & Assmelash Negash & Syed Safeer Mehdi Shamsi & Dong-Gil Shin & Gyubaek Cho, 2021. "Experimental Study of a Lab-Scale Organic Rankine Cycle System for Heat and Water Recovery from Flue Gas in Thermal Power Plants," Energies, MDPI, vol. 14(14), pages 1-13, July.
    20. Wang, Haichao & Hua, Pengmin & Wu, Xiaozhou & Zhang, Ruoyu & Granlund, Katja & Li, Ji & Zhu, Yingjie & Lahdelma, Risto & Teppo, Esa & Yu, Li, 2022. "Heat-power decoupling and energy saving of the CHP unit with heat pump based waste heat recovery system," Energy, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:331:y:2023:i:c:s030626192201635x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.