IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics036054422030116x.html
   My bibliography  Save this article

A numerical study on the thermal performance of prismatic li-ion batteries for hibrid electric aircraft

Author

Listed:
  • Yetik, Ozge
  • Karakoc, Tahir Hikmet

Abstract

The increase of greenhouse gas emissions and environmental pollution leading to global warming have made it necessary for measures to be taken to increase the production and usage of electric vehicles. Instead of fossil fuels, these vehicles, which are powered by electricity from sustainable sources, promise hope for global warming through zero emissions. Batteries for electric aircraft are in important position. In these vehicles, the primary energy source or primary auxiliary energy source is high-density batteries. Temperature is one of the most important factors impressive battery performance as it shortens battery life. Lithium ion batteries are the preferred battery in this study because they have a high specific energy and energy density. This study examined the performance of the heat generated by 10 prismatic batteries. These batteries were connected to each other in series. The cathode of the batteries is LiMn2O4. A three-dimensional thermal analysis was performed under natural and forced transport conditions. The temperature of the batteries rises in the middle of the battery module and an uneven temperature distribution was observed under natural convection. Because of the heat transfer from each battery’s surface, both a decrease in temperature was observed and a balanced temperature distribution happened under forced convections. As the C ratio decreased, the temperature of the batteries decreased, but this process requires a longer time. For this reason, C values should be selected according to the battery capacity and working environment.

Suggested Citation

  • Yetik, Ozge & Karakoc, Tahir Hikmet, 2020. "A numerical study on the thermal performance of prismatic li-ion batteries for hibrid electric aircraft," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s036054422030116x
    DOI: 10.1016/j.energy.2020.117009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030116X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaoming & Xie, Yongqi & Day, Rodney & Wu, Hongwei & Hu, Zhongliang & Zhu, Jianqin & Wen, Dongsheng, 2018. "Performance analysis of a novel thermal management system with composite phase change material for a lithium-ion battery pack," Energy, Elsevier, vol. 156(C), pages 154-168.
    2. Bai, Fanfei & Chen, Mingbiao & Song, Wenji & Yu, Qinghua & Li, Yongliang & Feng, Ziping & Ding, Yulong, 2019. "Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate," Energy, Elsevier, vol. 167(C), pages 561-574.
    3. Saw, Lip Huat & Ye, Yonghuang & Tay, Andrew A.O. & Chong, Wen Tong & Kuan, Seng How & Yew, Ming Chian, 2016. "Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling," Applied Energy, Elsevier, vol. 177(C), pages 783-792.
    4. Amer Hammami & Nathalie Raymond & Michel Armand, 2003. "Runaway risk of forming toxic compounds," Nature, Nature, vol. 424(6949), pages 635-636, August.
    5. Cicconi, Paolo & Landi, Daniele & Germani, Michele, 2017. "Thermal analysis and simulation of a Li-ion battery pack for a lightweight commercial EV," Applied Energy, Elsevier, vol. 192(C), pages 159-177.
    6. Ling, Ziye & Cao, Jiahao & Zhang, Wenbo & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology," Applied Energy, Elsevier, vol. 228(C), pages 777-788.
    7. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perez Estevez, Manuel Antonio & Calligaro, Sandro & Bottesi, Omar & Caligiuri, Carlo & Renzi, Massimiliano, 2021. "An electro-thermal model and its electrical parameters estimation procedure in a lithium-ion battery cell," Energy, Elsevier, vol. 234(C).
    2. Elsewify, O. & Souri, M. & Esfahani, M.N. & Hosseinzadeh, E. & Jabbari, M., 2021. "A new method for internal cooling of a large format lithium-ion battery pouch cell," Energy, Elsevier, vol. 225(C).
    3. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Jing, Heran, 2021. "Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles," Energy, Elsevier, vol. 235(C).
    4. Morali, Ugur, 2022. "A numerical and statistical implementation of a thermal model for a lithium-ion battery," Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Jiahao & Luo, Mingyun & Fang, Xiaoming & Ling, Ziye & Zhang, Zhengguo, 2020. "Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study," Energy, Elsevier, vol. 191(C).
    2. Mahesh Suresh Patil & Satyam Panchal & Namwon Kim & Moo-Yeon Lee, 2018. "Cooling Performance Characteristics of 20 Ah Lithium-Ion Pouch Cell with Cold Plates along Both Surfaces," Energies, MDPI, vol. 11(10), pages 1-19, September.
    3. Xu, Xinhai & Li, Wenzheng & Xu, Ben & Qin, Jiang, 2019. "Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions," Applied Energy, Elsevier, vol. 250(C), pages 404-412.
    4. Al-Zareer, Maan & Dincer, Ibrahim & Rosen, Marc A., 2019. "Comparative assessment of new liquid-to-vapor type battery cooling systems," Energy, Elsevier, vol. 188(C).
    5. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.
    7. Cao, Jiahao & He, Yangjing & Feng, Jinxin & Lin, Shao & Ling, Ziye & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge," Applied Energy, Elsevier, vol. 279(C).
    8. Brian Azzopardi & Abdul Hapid & Sunarto Kaleg & Sudirja & Djulia Onggo & Alexander C. Budiman, 2023. "Recent Advances in Battery Pack Polymer Composites," Energies, MDPI, vol. 16(17), pages 1-23, August.
    9. Behi, Hamidreza & Karimi, Danial & Jaguemont, Joris & Gandoman, Foad Heidari & Kalogiannis, Theodoros & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications," Energy, Elsevier, vol. 224(C).
    10. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    12. De Vita, Armando & Maheshwari, Arpit & Destro, Matteo & Santarelli, Massimo & Carello, Massimiliana, 2017. "Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications," Applied Energy, Elsevier, vol. 206(C), pages 101-112.
    13. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Xingxing Wang & Shengren Liu & Yujie Zhang & Shuaishuai Lv & Hongjun Ni & Yelin Deng & Yinnan Yuan, 2022. "A Review of the Power Battery Thermal Management System with Different Cooling, Heating and Coupling System," Energies, MDPI, vol. 15(6), pages 1-29, March.
    15. Yan, Weichao & Meng, Xiangzhao & Cui, Xin & Liu, Yilin & Chen, Qian & Jin, Liwen, 2022. "Evaporative cooling performance prediction and multi-objective optimization for hollow fiber membrane module using response surface methodology," Applied Energy, Elsevier, vol. 325(C).
    16. Ling, Ziye & Cao, Jiahao & Zhang, Wenbo & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology," Applied Energy, Elsevier, vol. 228(C), pages 777-788.
    17. Liang, Jialin & Gan, Yunhua & Li, Yong & Tan, Meixian & Wang, Jianqin, 2019. "Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures," Energy, Elsevier, vol. 189(C).
    18. Chunyu Zhao & Beile Zhang & Yuanming Zheng & Shunyuan Huang & Tongtong Yan & Xiufang Liu, 2020. "Hybrid Battery Thermal Management System in Electrical Vehicles: A Review," Energies, MDPI, vol. 13(23), pages 1-18, November.
    19. E, Jiaqiang & Zeng, Yan & Jin, Yu & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Chen, Jingwei & Zhu, Hao & Deng, Yuanwang, 2020. "Heat dissipation investigation of the power lithium-ion battery module based on orthogonal experiment design and fuzzy grey relation analysis," Energy, Elsevier, vol. 211(C).
    20. Quanyi Li & Jong-Rae Cho & Jianguang Zhai, 2021. "Optimization of Thermal Management System with Water and Phase Change Material Cooling for Li-Ion Battery Pack," Energies, MDPI, vol. 14(17), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s036054422030116x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.