IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v329y2023ics0306261922015379.html
   My bibliography  Save this article

Performance analysis of a hybrid aircraft propulsion system using solid oxide fuel cell, lithium ion battery and gas turbine

Author

Listed:
  • Farsi, Aida
  • Rosen, Marc A.

Abstract

A novel integration of a solid oxide fuel cell (SOFC), lithium ion batteries and a gas turbine propulsion system is proposed for a hybrid electric aircraft. Methane as hydrogen storage medium is fed to the propulsion system so as to avoid the limitations associated with the use of pure hydrogen storage and utilization. An internal reformer is used in the SOFC to produce hydrogen through the steam reforming and water–gas-shift reactions of the methane and steam mixture. An afterburner is used to generate the heat required for generation of electrical power in the gas turbine and preheating the SOFC reactants by burning the remaining fuel from the SOFC. Also, a pathway for liquid water input to the hybrid system is designed in a way to first circulate through the lithium ion batteries to remove generated heat from them before it is used in the remainder of system. The variations of heat generation rate and temperature of the battery with time are predicted through electrochemical and thermal models. A performance assessment of the proposed propulsion system is conducted to investigate the compatibility and applicability of the system. It is found that at 1C (charge/discharge rate of battery), the average temperature of the lithium ion battery is maintained at about 28 °C through a water-based cooling process. The optimum net electrical power output and energy efficiency of the hybrid propulsion system are achieved at compressor pressurization ratio of 7.5. Furthermore, the net electrical power produced and energy efficiency of the hybrid propulsion system reach their maximum values (i.e., 6.6 × 106 W and 46.5 %, respectively) at a SOFC temperature of 775 °C.

Suggested Citation

  • Farsi, Aida & Rosen, Marc A., 2023. "Performance analysis of a hybrid aircraft propulsion system using solid oxide fuel cell, lithium ion battery and gas turbine," Applied Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015379
    DOI: 10.1016/j.apenergy.2022.120280
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Zareer, Maan & Dincer, Ibrahim & Rosen, Marc A., 2019. "Comparative assessment of new liquid-to-vapor type battery cooling systems," Energy, Elsevier, vol. 188(C).
    2. repec:zib:zjmerd:4jmerd2018-22-32 is not listed on IDEAS
    3. Julian Hoelzen & Yaolong Liu & Boris Bensmann & Christopher Winnefeld & Ali Elham & Jens Friedrichs & Richard Hanke-Rauschenbach, 2018. "Conceptual Design of Operation Strategies for Hybrid Electric Aircraft," Energies, MDPI, vol. 11(1), pages 1-26, January.
    4. Anh Tuan Hoang & Van Viet Pham, 2018. "A Review On Fuels Used For Marine Diesel Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(4), pages 22-23, November.
    5. Di Giorgio, Paolo & Di Ilio, Giovanni & Jannelli, Elio & Conte, Fiorentino Valerio, 2022. "Innovative battery thermal management system based on hydrogen storage in metal hydrides for fuel cell hybrid electric vehicles," Applied Energy, Elsevier, vol. 315(C).
    6. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    7. Yahya, Abir & Ferrero, Domenico & Dhahri, Hacen & Leone, Pierluigi & Slimi, Khalifa & Santarelli, Massimo, 2018. "Electrochemical performance of solid oxide fuel cell: Experimental study and calibrated model," Energy, Elsevier, vol. 142(C), pages 932-943.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Meng, Xin & Deng, Bohao & Wu, Weifeng & Zhao, Pan, 2023. "Thermodynamic analysis of a novel combined heating and power system based on low temperature solid oxide fuel cell (LT-SOFC) and high temperature proton exchange membrane fuel cell (HT-PEMFC)," Energy, Elsevier, vol. 284(C).
    2. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Wang, Zhanxue, 2023. "A comprehensive evaluation of ducted fan hybrid engines integrated with fuel cells for sustainable aviation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Matthieu Pettes-Duler & Xavier Roboam & Bruno Sareni, 2022. "Integrated Optimal Design for Hybrid Electric Powertrain of Future Aircrafts," Energies, MDPI, vol. 15(18), pages 1-25, September.
    3. Xuan Phuong Nguyen, 2019. "The Bus Transportation Issue And People Satisfaction With Public Transport In Ho Chi Minh City ," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 10-16, January.
    4. repec:zib:zjmerd:4jmerd2018-116-121 is not listed on IDEAS
    5. Maršenka Marksel & Anita Prapotnik Brdnik, 2023. "Comparative Analysis of Direct Operating Costs: Conventional vs. Hydrogen Fuel Cell 19-Seat Aircraft," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    6. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    7. Nguyen Thi Xuan Huong & Bui Thi Dieu Thuy, 2019. "Assessment Of Engineering Speciality Teaching In The Period Of Integration," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(3), pages 62-65, April.
    8. Nguyen, T.D. & Deng, J. & Robert, B. & Chen, W. & Siegmund, T., 2022. "Experimental investigation on cooling of prismatic battery cells through cell integrated features," Energy, Elsevier, vol. 244(PA).
    9. Van Hai Nguyen & Duc Thiep Cao & Thi Hien Do, 2019. "Research And Calculation Of The Biogas Fuel Supply System For A Small Marine Diesel Engine," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 64-70, January.
    10. Fiammetta Rita Bianchi & Arianna Baldinelli & Linda Barelli & Giovanni Cinti & Emilio Audasso & Barbara Bosio, 2020. "Multiscale Modeling for Reversible Solid Oxide Cell Operation," Energies, MDPI, vol. 13(19), pages 1-16, September.
    11. Pan, Zehua & Shen, Jian & Wang, Jingyi & Xu, Xinhai & Chan, Wei Ping & Liu, Siyu & Zhou, Yexin & Yan, Zilin & Jiao, Zhenjun & Lim, Teik-Thye & Zhong, Zheng, 2022. "Thermodynamic analyses of a standalone diesel-fueled distributed power generation system based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 308(C).
    12. Guo, Fafu & Li, Chengjie & Liu, He & Cheng, Kunlin & Qin, Jiang, 2023. "Matching and performance analysis of a solid oxide fuel cell turbine-less hybrid electric propulsion system on aircraft," Energy, Elsevier, vol. 263(PA).
    13. Ekici, Selcuk & Ayar, Murat & Kilic, Ugur & Karakoc, T. Hikmet, 2023. "Performance based analysis for the Ankara-London route in terms of emissions and fuel consumption of different combinations of aircraft/engine: An IMPACT application," Journal of Air Transport Management, Elsevier, vol. 108(C).
    14. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Wang, Zhanxue, 2023. "A comprehensive evaluation of ducted fan hybrid engines integrated with fuel cells for sustainable aviation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    15. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    16. Xuan Phuong Nguyen & Dinh Tuyen Nguyen & Van Viet Pham & Dinh Tung Vo, 2022. "Highlights Of Oil Treatment Technologies And Rise Of Oil-Absorbing Materials In Ocean Cleaning Strategy," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 6(1), pages 06-14, January.
    17. Chen, Jinwei & Hu, Zhenchao & Lu, Jinzhi & Zhang, Huisheng & Weng, Shilie, 2022. "A novel control strategy with an anode variable geometry ejector for a SOFC-GT hybrid system," Energy, Elsevier, vol. 261(PA).
    18. Hoang, Anh Tuan & Tabatabaei, Meisam & Aghbashlo, Mortaza & Carlucci, Antonio Paolo & Ölçer, Aykut I. & Le, Anh Tuan & Ghassemi, Abbas, 2021. "Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    20. Wang, Tao & Zhang, Yu & Yin, Zhao & Qiu, Liang & Hua, Yang & Zhang, Xian-wen & Qian, Ye-jian, 2023. "Decoupling control scheme optimization and energy analysis for a triaxial gas turbine based on the variable power offtakes/inputs," Energy, Elsevier, vol. 262(PB).
    21. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.