IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v323y2022ics0306261922009151.html
   My bibliography  Save this article

High-performance H2O2 paper fuel cell boosted via electrolyte toning and radical generation

Author

Listed:
  • Luo, Shijing
  • Pan, Wending
  • Wang, Yifei
  • Zhao, Xiaolong
  • Wah Leong, Kee
  • Leung, Dennis Y.C.

Abstract

Cellulose paper has been employed to develop pumpless microfluidic fuel cells. Meanwhile, hydrogen peroxide as both the fuel and oxidant has attracted attention since it is eco-friendly for producing only water. However, low open-circuit voltage (OCV) and power density of reported H2O2 fuel cells due to the mixed potentials (simultaneous oxidation and reduction at the same electrode) preclude its applications. In this study, a H2O2 paper fuel cell with a gel-aided dual-electrolyte configuration has been proposed for the first time to solve this problem. An ion-conductive hydrogel has been sandwiched between the independent catholyte and anolyte flows to serve as part of the electrolyte. Its OCV has been elevated to 1 V and a high peak power density of 10.2 mW cm−2 has been achieved by toning the electrolytes, which exceeds most reported H2O2 fuel cells. The results demonstrate that alkaline anolyte benefits the cell performance more significantly than acidic catholyte does. The reaction mechanism at each electrode was further studied to provide insights for future development of H2O2 fuel cells: the reduction at the cathode follows the Fenton reaction; as for the oxidation at the anode, it was first revealed that H2O2 oxidation was facilitated by free radicals generated from H2O2 in alkaline media. Besides, the radicals also help to maintain a large voltage difference between the electrodes. Furthermore, this fuel cell shows great durability and can be instantly re-activated upon refueling. This gel-aided dual-electrolyte fuel cell design can pave a way for practical applications of direct H2O2 fuel cells.

Suggested Citation

  • Luo, Shijing & Pan, Wending & Wang, Yifei & Zhao, Xiaolong & Wah Leong, Kee & Leung, Dennis Y.C., 2022. "High-performance H2O2 paper fuel cell boosted via electrolyte toning and radical generation," Applied Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009151
    DOI: 10.1016/j.apenergy.2022.119610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922009151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    2. Badwal, S.P.S. & Giddey, S. & Kulkarni, A. & Goel, J. & Basu, S., 2015. "Direct ethanol fuel cells for transport and stationary applications – A comprehensive review," Applied Energy, Elsevier, vol. 145(C), pages 80-103.
    3. Wang, Yifei & Luo, Shijing & Kwok, Holly Y.H. & Pan, Wending & Zhang, Yingguang & Zhao, Xiaolong & Leung, Dennis Y.C., 2021. "Microfluidic fuel cells with different types of fuels: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Gunnar Luderer & Silvia Madeddu & Leon Merfort & Falko Ueckerdt & Michaja Pehl & Robert Pietzcker & Marianna Rottoli & Felix Schreyer & Nico Bauer & Lavinia Baumstark & Christoph Bertram & Alois Dirna, 2022. "Author Correction: Impact of declining renewable energy costs on electrification in low-emission scenarios," Nature Energy, Nature, vol. 7(4), pages 380-381, April.
    5. Gunnar Luderer & Silvia Madeddu & Leon Merfort & Falko Ueckerdt & Michaja Pehl & Robert Pietzcker & Marianna Rottoli & Felix Schreyer & Nico Bauer & Lavinia Baumstark & Christoph Bertram & Alois Dirna, 2022. "Impact of declining renewable energy costs on electrification in low-emission scenarios," Nature Energy, Nature, vol. 7(1), pages 32-42, January.
    6. Munjewar, Seema S. & Thombre, Shashikant B. & Mallick, Ranjan K., 2017. "Approaches to overcome the barrier issues of passive direct methanol fuel cell – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1087-1104.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Adrien Nicolle & Diego Cebreros & Olivier Massol & Emma Jagu, 2023. "Modeling CO2 pipeline systems: An analytical lens for CCS regulation," Post-Print hal-04297191, HAL.
    3. Tian, Xuelin & An, Chunjiang & Chen, Zhikun, 2023. "The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Eunsung Oh, 2022. "Fair Virtual Energy Storage System Operation for Smart Energy Communities," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    5. Takuma Watari & André Cabrera Serrenho & Lukas Gast & Jonathan Cullen & Julian Allwood, 2023. "Feasible supply of steel and cement within a carbon budget is likely to fall short of expected global demand," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Maksym Chepeliev, 2023. "GTAP-Power Data Base: Version 11," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 8(2), pages 100-133, December.
    7. Xu, Qidong & Xia, Lingchao & He, Qijiao & Guo, Zengjia & Ni, Meng, 2021. "Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells," Applied Energy, Elsevier, vol. 291(C).
    8. Xiang, Xiwang & Ma, Minda & Ma, Xin & Chen, Liming & Cai, Weiguang & Feng, Wei & Ma, Zhili, 2022. "Historical decarbonization of global commercial building operations in the 21st century," Applied Energy, Elsevier, vol. 322(C).
    9. Göke, Leonard & Weibezahn, Jens & Kendziorski, Mario, 2023. "How flexible electrification can integrate fluctuating renewables," Energy, Elsevier, vol. 278(PA).
    10. Song, Feng & Cui, Jian & Yu, Yihua, 2022. "Dynamic volatility spillover effects between wind and solar power generations: Implications for hedging strategies and a sustainable power sector," Economic Modelling, Elsevier, vol. 116(C).
    11. Philomena Dadzie & Nicholas Bamegne Nambie & Belinda Ameh Obobi, 2023. "Impact of Petroleum Energy Price Volatility on Commodity Prices in Ghana," International Journal of Economics and Financial Issues, Econjournals, vol. 13(1), pages 73-82, January.
    12. Pan, Zhefei & Bi, Yanding & An, Liang, 2020. "A cost-effective and chemically stable electrode binder for alkaline-acid direct ethylene glycol fuel cells," Applied Energy, Elsevier, vol. 258(C).
    13. Hetong Wang & Kuishuang Feng & Peng Wang & Yuyao Yang & Laixiang Sun & Fan Yang & Wei-Qiang Chen & Yiyi Zhang & Jiashuo Li, 2023. "China’s electric vehicle and climate ambitions jeopardized by surging critical material prices," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    15. Keiner, Dominik & Gulagi, Ashish & Breyer, Christian, 2023. "Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses," Energy, Elsevier, vol. 272(C).
    16. Ken Oshiro & Shinichiro Fujimori, 2024. "Limited impact of hydrogen co-firing on prolonging fossil-based power generation under low emissions scenarios," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
    18. Mathias Mier & Jacqueline Adelowo & Valeriya Azarova, 2022. "Endogenous Technological Change in Power Markets," ifo Working Paper Series 373, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    19. João Ider & Adhimar Oliveira & Rero Rubinger & Ana Karoline Silva & Aluízio Assini & Geraldo Tiago-Filho & Marcia Baldissera, 2022. "Concentrated Solar Power with Thermoelectric Generator—An Approach Using the Cross-Entropy Optimization Method," Energies, MDPI, vol. 15(13), pages 1-11, June.
    20. ElSayed, Mai & Aghahosseini, Arman & Caldera, Upeksha & Breyer, Christian, 2023. "Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt," Applied Energy, Elsevier, vol. 343(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.