IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v323y2022ics0306261922008923.html
   My bibliography  Save this article

Experimental evaluation of the pyrolysis of plastic residues and waste tires

Author

Listed:
  • Venturelli, Matteo
  • Falletta, Ermelinda
  • Pirola, Carlo
  • Ferrari, Federico
  • Milani, Massimo
  • Montorsi, Luca

Abstract

The paper presents the design of the experimental apparatus developed in order to analyse the performance of a prototype of a pyrolysis system for the exploitation of the plastic residues of industrial processes and the end-of-life tires. The small-scale pilot prototype is specifically designed for carrying out an experimental campaign aimed at determining the influence of different plastic types on the yield and on the quality of the liquid oil, gas and char obtained in the pyrolysis process. The study investigates the effect of different mixtures of various plastic products mainly made of polyethylene, styrene butadiene rubber, nylon, and natural rubber. The prototype is equipped with a control system able to monitor the main operating parameters of the process, such as the pyrogas pressure and temperature as well as the temperature inside the reactor where the pyrolysis takes place. The monitored variables are employed for deriving correlations among the operating conditions and the yield of the pyrolysis process. Moreover, SPME-GC/MS analysis were performed on different gas samples to estimate the main compounds that are contained in the syngas in comparison to the different plastic wastes analysed. Thus, the emissions of the small-scale prototype are evaluated. The results obtained by means of the experimental campaign performed on the test rig were used to carry out the economic assessment of an integrated pyrolysis system for the exploitation of the plastic residues from an industrial plant.

Suggested Citation

  • Venturelli, Matteo & Falletta, Ermelinda & Pirola, Carlo & Ferrari, Federico & Milani, Massimo & Montorsi, Luca, 2022. "Experimental evaluation of the pyrolysis of plastic residues and waste tires," Applied Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008923
    DOI: 10.1016/j.apenergy.2022.119583
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922008923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milani, Massimo & Montorsi, Luca & Terzi, Stefano, 2017. "Numerical analysis of the heat recovery efficiency for the post-combustion flue gas treatment in a coffee roaster plant," Energy, Elsevier, vol. 141(C), pages 729-743.
    2. Mazloum, Shawki & Awad, Sary & Allam, Nadine & Aboumsallem, Youssef & Loubar, Khaled & Tazerout, Mohand, 2021. "Modelling plastic heating and melting in a semi-batch pyrolysis reactor," Applied Energy, Elsevier, vol. 283(C).
    3. Pini, Martina & Breglia, Giovanni & Venturelli, Matteo & Montorsi, Luca & Milani, Massimo & Neri, Paolo & Ferrari, Anna Maria, 2020. "Life cycle assessment of an innovative cogeneration system based on the aluminum combustion with water," Renewable Energy, Elsevier, vol. 154(C), pages 532-541.
    4. Seshasayee, Mahadevan Subramanya & Savage, Phillip E., 2020. "Oil from plastic via hydrothermal liquefaction: Production and characterization," Applied Energy, Elsevier, vol. 278(C).
    5. Burra, K.G. & Gupta, A.K., 2018. "Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes," Applied Energy, Elsevier, vol. 220(C), pages 408-418.
    6. Montorsi, L. & Milani, M. & Venturelli, M., 2018. "Economic assessment of an integrated waste to energy system for an urban sewage treatment plant: A numerical approach," Energy, Elsevier, vol. 158(C), pages 105-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jie & Yu, Di & Pan, Lanjia & Xu, Xinhai & Wang, Xiaonan & Wang, Yin, 2023. "Recent advances in plastic waste pyrolysis for liquid fuel production: Critical factors and machine learning applications," Applied Energy, Elsevier, vol. 346(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanjia Zhang & Xueru Chen & Leilei Cheng & Jing Gu & Yulin Xu, 2023. "Conversion of Polyethylene to High-Yield Fuel Oil at Low Temperatures and Atmospheric Initial Pressure," IJERPH, MDPI, vol. 20(5), pages 1-14, February.
    2. Lei Han & Jinling Li & Chengtun Qu & Zhiguo Shao & Tao Yu & Bo Yang, 2022. "Recent Progress in Sludge Co-Pyrolysis Technology," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    3. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    4. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    5. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
    6. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Xie, Teng & Yao, Zonglu & Huo, Lili & Jia, Jixiu & Zhang, Peizhen & Tian, Liwei & Zhao, Lixin, 2023. "Characteristics of biochar derived from the co-pyrolysis of corn stalk and mulch film waste," Energy, Elsevier, vol. 262(PB).
    8. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    9. Wu, Junnan & Liao, Yanfen & Lin, Yan & Tian, Yunlong & Ma, Xiaoqian, 2019. "Study on thermal decomposition kinetics model of sewage sludge and wheat based on multi distributed activation energy," Energy, Elsevier, vol. 185(C), pages 795-803.
    10. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    11. Sogand Musivand & Maria Paola Bracciale & Martina Damizia & Paolo De Filippis & Benedetta de Caprariis, 2023. "Viable Recycling of Polystyrene via Hydrothermal Liquefaction and Pyrolysis," Energies, MDPI, vol. 16(13), pages 1-13, June.
    12. Luqing Zhang & Aikang Chen & Han Gu & Xitian Wang & Da Xie & Chenghong Gu, 2019. "Planning of the Multi-Energy Circular System Coupled with Waste Processing Base: A Case from China," Energies, MDPI, vol. 12(20), pages 1-17, October.
    13. Gluth, A. & Xu, Z. & Fifield, L.S. & Yang, B., 2022. "Advancing biological processing for valorization of plastic wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    14. David Palma-Heredia & Manel Poch & Miquel À. Cugueró-Escofet, 2020. "Implementation of a Decision Support System for Sewage Sludge Management," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    15. Delpech, Bertrand & Milani, Massimo & Montorsi, Luca & Boscardin, Davide & Chauhan, Amisha & Almahmoud, Sulaiman & Axcell, Brian & Jouhara, Hussam, 2018. "Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry," Energy, Elsevier, vol. 158(C), pages 656-665.
    16. Liu, Xuan & Burra, Kiran G. & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2020. "On deconvolution for understanding synergistic effects in co-pyrolysis of pinewood and polypropylene," Applied Energy, Elsevier, vol. 279(C).
    17. Marco Vacchi & Cristina Siligardi & Erika Iveth Cedillo-González & Anna Maria Ferrari & Davide Settembre-Blundo, 2021. "Industry 4.0 and Smart Data as Enablers of the Circular Economy in Manufacturing: Product Re-Engineering with Circular Eco-Design," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    18. Burra, Kiran Raj G. & Liu, Xuan & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2021. "Quantifying the sources of synergistic effects in co-pyrolysis of pinewood and polystyrene," Applied Energy, Elsevier, vol. 302(C).
    19. Dan Cudjoe, 2023. "Energy-economics and environmental prospects of integrated waste-to-energy projects in the Beijing-Tianjin-Hebei region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12597-12628, November.
    20. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.