IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v315y2022ics0306261922003865.html
   My bibliography  Save this article

Experimental investigation of a novel mechanically fluidized bed reactor for thermochemical energy storage with calcium hydroxide/calcium oxide

Author

Listed:
  • Risthaus, Kai
  • Linder, Marc
  • Schmidt, Matthias

Abstract

The reaction system based on the reversible hydration of CaO is promising for thermochemical energy storage since the material is a non-toxic, cheap industrial mass product with a comparatively high reaction enthalpy. However, the fine cohesive powder has a low thermal conductivity as well as a limited flowability and is not easily fluidized. Therefore, a reactor realization is challenging especially for higher capacities when the reactor cannot be the storage unit simultaneously. We developed a novel reactor concept based on a plow share mixer, demonstrated its feasibility and investigated its heat and mass transfer performance. In this concept, a rotating mixing device mechanically fluidize the bed in the reactor without the necessity of a gas flow, which might be especially advantageous for smaller power reactors. Both reaction directions have been successfully demonstrated. However, in the present configuration, the formation of a CaO/Ca(OH)2 layer on the heat transferring surface of the reactor reduces the heat transfer coefficient. Another layer formed on the filter, separating the reactor from the condenser, limited the gas transport and thereby dominated the conversion rate of the dehydration. Despite these limitations the mechanical fluidization yields significantly improved heat transfer compared to fixed bed reactors. One main parameter characterizing the performance of the reactor is the effective heat transfer coefficient from the electrically heated wall to the mechanically fluidized bed which was determined to be 156 ± 16 W/m2/K and 243 ± 52 W/m2/K for the heating up of CaO and the dehydration of Ca(OH)2, respectively.

Suggested Citation

  • Risthaus, Kai & Linder, Marc & Schmidt, Matthias, 2022. "Experimental investigation of a novel mechanically fluidized bed reactor for thermochemical energy storage with calcium hydroxide/calcium oxide," Applied Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:appene:v:315:y:2022:i:c:s0306261922003865
    DOI: 10.1016/j.apenergy.2022.118976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922003865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schmidt, Matthias & Linder, Marc, 2017. "Power generation based on the Ca(OH)2/ CaO thermochemical storage system – Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design," Applied Energy, Elsevier, vol. 203(C), pages 594-607.
    2. Schmidt, Matthias & Gutierrez, Andrea & Linder, Marc, 2017. "Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor," Applied Energy, Elsevier, vol. 188(C), pages 672-681.
    3. Risthaus, Kai & Bürger, Inga & Linder, Marc & Schmidt, Matthias, 2020. "Numerical analysis of the hydration of calcium oxide in a fixed bed reactor based on lab-scale experiments," Applied Energy, Elsevier, vol. 261(C).
    4. Yan, J. & Zhao, C.Y., 2016. "Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage," Applied Energy, Elsevier, vol. 175(C), pages 277-284.
    5. Nestor A. Sepulveda & Jesse D. Jenkins & Aurora Edington & Dharik S. Mallapragada & Richard K. Lester, 2021. "The design space for long-duration energy storage in decarbonized power systems," Nature Energy, Nature, vol. 6(5), pages 506-516, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Mengyi & Chen, Li & Zhou, Yuhao & Tao, Wen-Quan, 2022. "Numerical simulation of the calcium hydroxide/calcium oxide system dehydration reaction in a shell-tube reactor," Applied Energy, Elsevier, vol. 312(C).
    2. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    3. Wang, Mengyi & Chen, Li & He, Pu & Tao, Wen-Quan, 2019. "Numerical study and enhancement of Ca(OH)2/CaO dehydration process with porous channels embedded in reactors," Energy, Elsevier, vol. 181(C), pages 417-428.
    4. Funayama, Shigehiko & Takasu, Hiroki & Kim, Seon Tae & Kato, Yukitaka, 2020. "Thermochemical storage performance of a packed bed of calcium hydroxide composite with a silicon-based ceramic honeycomb support," Energy, Elsevier, vol. 201(C).
    5. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
    6. Luo, Ji-Wang & Chen, Li & Wang, MengYi & Xia, Yang & Tao, WenQuan, 2022. "Particle-scale study of coupled physicochemical processes in Ca(OH)2 dehydration using the lattice Boltzmann method," Energy, Elsevier, vol. 250(C).
    7. Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
    8. Carro, A. & Chacartegui, R. & Ortiz, C. & Arcenegui-Troya, J. & Pérez-Maqueda, L.A. & Becerra, J.A., 2023. "Integration of calcium looping and calcium hydroxide thermochemical systems for energy storage and power production in concentrating solar power plants," Energy, Elsevier, vol. 283(C).
    9. Vecchi, Andrea & Sciacovelli, Adriano, 2023. "Long-duration thermo-mechanical energy storage – Present and future techno-economic competitiveness," Applied Energy, Elsevier, vol. 334(C).
    10. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    11. Schmidt, Matthias & Linder, Marc, 2017. "Power generation based on the Ca(OH)2/ CaO thermochemical storage system – Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design," Applied Energy, Elsevier, vol. 203(C), pages 594-607.
    12. Risthaus, Kai & Bürger, Inga & Linder, Marc & Schmidt, Matthias, 2020. "Numerical analysis of the hydration of calcium oxide in a fixed bed reactor based on lab-scale experiments," Applied Energy, Elsevier, vol. 261(C).
    13. Jun Yan & Lei Jiang & Changying Zhao, 2023. "Numerical Simulation of the Ca(OH) 2 /CaO Thermochemical Heat Storage Process in an Internal Heating Fixed-Bed Reactor," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    14. Anti Kur & Jo Darkwa & John Calautit & Rabah Boukhanouf & Mark Worall, 2023. "Solid–Gas Thermochemical Energy Storage Materials and Reactors for Low to High-Temperature Applications: A Concise Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
    15. Laurie André & Stéphane Abanades, 2020. "Recent Advances in Thermochemical Energy Storage via Solid–Gas Reversible Reactions at High Temperature," Energies, MDPI, vol. 13(22), pages 1-23, November.
    16. Peng, Xinyue & Yao, Min & Root, Thatcher W. & Maravelias, Christos T., 2020. "Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 262(C).
    17. Jae Yong Lee & Taesu Yim & Hyouck Ju Kim & Sungkook Hong & Doo Won Seo & Hong Soo Kim, 2019. "Investigation on Long Term Operation of Thermochemical Heat Storage with MgO-Based Composite Honeycombs," Energies, MDPI, vol. 12(7), pages 1-18, April.
    18. Aman Gupta & Piyush Sabharwall & Paul D. Armatis & Brian M. Fronk & Vivek Utgikar, 2022. "Coupling Chemical Heat Pump with Nuclear Reactor for Temperature Amplification by Delivering Process Heat and Electricity: A Techno-Economic Analysis," Energies, MDPI, vol. 15(16), pages 1-25, August.
    19. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:315:y:2022:i:c:s0306261922003865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.