IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v310y2022ics0306261921015622.html
   My bibliography  Save this article

Power system load forecasting using mobility optimization and multi-task learning in COVID-19

Author

Listed:
  • Liu, Jiefeng
  • Zhang, Zhenhao
  • Fan, Xianhao
  • Zhang, Yiyi
  • Wang, Jiaqi
  • Zhou, Ke
  • Liang, Shuo
  • Yu, Xiaoyong
  • Zhang, Wei

Abstract

Affected by the new coronavirus (COVID-19) pandemic, global energy production and consumption have changed a lot. It is unknown whether conventional short-term load forecasting methods based on single-task, single-region, and conventional indicators can accurately capture the load pattern during the COVID-19 and should be carefully studied. In this paper, we make the following contributions: 1) A mobility-optimized load forecasting method based on multi-task learning and long short-term memory network is innovatively proposed to alleviate the impact of the COVID-19 on short-term load forecasting. The incorporation of mobility data and data sharing layers potentially reduces the difficulty of capturing the load patterns and improves the generalization of the load forecasting models. 2) The real public data collected from multiple agencies and companies in the United States and European countries are used to conduct horizontal and vertical tests. These tests prove the failure of the conventional models and methods in the COVID-19 and demonstrate the high accuracy (error mostly less than 1%) and robustness of the proposed model. 3) The Shapley additive explanations technology based on game theory is innovatively introduced to improve the objectivity of the models. It visualizes that mobility indicators are of great help to the accurate load forecasting. Besides, the non-synchronous relationships between the indicators’ correlations and contributions to the load have been proved.

Suggested Citation

  • Liu, Jiefeng & Zhang, Zhenhao & Fan, Xianhao & Zhang, Yiyi & Wang, Jiaqi & Zhou, Ke & Liang, Shuo & Yu, Xiaoyong & Zhang, Wei, 2022. "Power system load forecasting using mobility optimization and multi-task learning in COVID-19," Applied Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261921015622
    DOI: 10.1016/j.apenergy.2021.118303
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921015622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
    2. Ghadimi, Noradin & Akbarimajd, Adel & Shayeghi, Hossein & Abedinia, Oveis, 2018. "Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting," Energy, Elsevier, vol. 161(C), pages 130-142.
    3. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    4. Dietrich, Bastian & Walther, Jessica & Weigold, Matthias & Abele, Eberhard, 2020. "Machine learning based very short term load forecasting of machine tools," Applied Energy, Elsevier, vol. 276(C).
    5. Li, Chen, 2020. "Designing a short-term load forecasting model in the urban smart grid system," Applied Energy, Elsevier, vol. 266(C).
    6. Ahmad, Tanveer & Zhang, Hongcai, 2020. "Novel deep supervised ML models with feature selection approach for large-scale utilities and buildings short and medium-term load requirement forecasts," Energy, Elsevier, vol. 209(C).
    7. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    8. Khoshrou, Abdolrahman & Pauwels, Eric J., 2019. "Short-term scenario-based probabilistic load forecasting: A data-driven approach," Applied Energy, Elsevier, vol. 238(C), pages 1258-1268.
    9. Guo‐Feng Fan & Yan‐Hui Guo & Jia‐Mei Zheng & Wei‐Chiang Hong, 2020. "A generalized regression model based on hybrid empirical mode decomposition and support vector regression with back‐propagation neural network for mid‐short‐term load forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 737-756, August.
    10. Stan Lipovetsky & Michael Conklin, 2001. "Analysis of regression in game theory approach," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(4), pages 319-330, October.
    11. Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
    12. Nystrup, Peter & Lindström, Erik & Pinson, Pierre & Madsen, Henrik, 2020. "Temporal hierarchies with autocorrelation for load forecasting," European Journal of Operational Research, Elsevier, vol. 280(3), pages 876-888.
    13. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    14. Barman, Mayur & Dev Choudhury, Nalin Behari, 2019. "Season specific approach for short-term load forecasting based on hybrid FA-SVM and similarity concept," Energy, Elsevier, vol. 174(C), pages 886-896.
    15. Yin, Linfei & Xie, Jiaxing, 2021. "Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    2. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2024. "An interpretable framework for modeling global solar radiation using tree-based ensemble machine learning and Shapley additive explanations methods," Applied Energy, Elsevier, vol. 364(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yanmei & Hasan, Najmul & Deng, Changrui & Bao, Yukun, 2022. "Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting," Energy, Elsevier, vol. 239(PC).
    2. Hafeez, Ghulam & Alimgeer, Khurram Saleem & Khan, Imran, 2020. "Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid," Applied Energy, Elsevier, vol. 269(C).
    3. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
    4. Li, Yiyan & Zhang, Si & Hu, Rongxing & Lu, Ning, 2021. "A meta-learning based distribution system load forecasting model selection framework," Applied Energy, Elsevier, vol. 294(C).
    5. Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
    6. Shi, Jiaqi & Li, Chenxi & Yan, Xiaohe, 2023. "Artificial intelligence for load forecasting: A stacking learning approach based on ensemble diversity regularization," Energy, Elsevier, vol. 262(PB).
    7. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    8. Jiarong Shi & Zhiteng Wang, 2022. "A Hybrid Forecast Model for Household Electric Power by Fusing Landmark-Based Spectral Clustering and Deep Learning," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    9. Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang, 2020. "Meta-learning strategy based on user preferences and a machine recommendation system for real-time cooling load and COP forecasting," Applied Energy, Elsevier, vol. 270(C).
    10. Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
    11. Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
    12. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    13. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    14. Qiangqiang Cheng & Yiqi Yan & Shichao Liu & Chunsheng Yang & Hicham Chaoui & Mohamad Alzayed, 2020. "Particle Filter-Based Electricity Load Prediction for Grid-Connected Microgrid Day-Ahead Scheduling," Energies, MDPI, vol. 13(24), pages 1-15, December.
    15. Fan, Guo-Feng & Yu, Meng & Dong, Song-Qiao & Yeh, Yi-Hsuan & Hong, Wei-Chiang, 2021. "Forecasting short-term electricity load using hybrid support vector regression with grey catastrophe and random forest modeling," Utilities Policy, Elsevier, vol. 73(C).
    16. Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
    17. Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
    18. Hao Zhen & Dongxiao Niu & Min Yu & Keke Wang & Yi Liang & Xiaomin Xu, 2020. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    19. Hu, Yi & Qu, Boyang & Wang, Jie & Liang, Jing & Wang, Yanli & Yu, Kunjie & Li, Yaxin & Qiao, Kangjia, 2021. "Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning," Applied Energy, Elsevier, vol. 285(C).
    20. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261921015622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.