IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v308y2022ics0306261921015610.html
   My bibliography  Save this article

An integrated real-time optimization, control, and estimation scheme for post-combustion CO2 capture

Author

Listed:
  • Patrón, Gabriel D.
  • Ricardez-Sandoval, Luis

Abstract

This study presents a novel operational scheme for post-combustion CO2 capture (PCC) plants downstream from fuel-fired power plants. The approach is comprised of real-time optimization (RTO), nonlinear model predictive control (NMPC), and moving horizon estimation (MHE) layers. These layers are integrated to operate the system economically via a new economic function that accounts for the most significant economic aspects of PCC, including the carbon economy, energy, chemical, and utility costs. The proposed approach was employed on the case study of an MEA-based PCC absorber section, which uses a mechanistic process model to provide an accurate representation of the system. The NMPC layer is novel in its ability to enable flexible control of the plant by manipulating fresh material streams to impact CO2 capture and the MHE layer is the first to provide accurate system estimates to the controller with realistically accessible measurements. The proposed scheme was subjected to a cofiring scenario, whereby the switching between two fuels (i.e., biomass and coal) is reflected in the flue gas composition. In this scenario, a ∼19% steady-state cost improvement is observed with respect to the pre-disturbance cost. Moreover, the MHE was shown to cause an acceptable ∼0.5% of performance loss in the process economics through its effect on the NMPC. The scheme was also subjected to a ±20% diurnal variation in power plant load through steps in the flue gas flowrate and was found to provide consistent steady-state economic improvements (from ∼12% cost improvement to ∼17% loss abatement) for each of the disturbances observed. Furthermore, a price variation scenario highlighted the operational dependence of the system upon changes in economic incentives via the prices. When compared to a ‘no RTO’ case, the scheme was found to yield economic improvement ranging from ∼3% to ∼14% depending on the pricing. All scenarios in the case study displayed steady-state cost savings that exceeded the energy penalty imposed on the power plant by the PCC plant. This suggests the proposed scheme is an effective framework for the economic operation of a general class of PCC plants (i.e., with different solvents, process designs and control schemes, etc.) and can help enable the viability of PCC for the continued use of fuel-firing.

Suggested Citation

  • Patrón, Gabriel D. & Ricardez-Sandoval, Luis, 2022. "An integrated real-time optimization, control, and estimation scheme for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921015610
    DOI: 10.1016/j.apenergy.2021.118302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921015610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nwaoha, Chikezie & Tontiwachwuthikul, Paitoon, 2019. "Carbon dioxide capture from pulp mill using 2-amino-2-methyl-1-propanol and monoethanolamine blend: Techno-economic assessment of advanced process configuration," Applied Energy, Elsevier, vol. 250(C), pages 1202-1216.
    2. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    4. Li, Kangkang & Leigh, Wardhaugh & Feron, Paul & Yu, Hai & Tade, Moses, 2016. "Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements," Applied Energy, Elsevier, vol. 165(C), pages 648-659.
    5. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    6. Akinola, Toluleke E. & Oko, Eni & Wu, Xiao & Ma, Keming & Wang, Meihong, 2020. "Nonlinear model predictive control (NMPC) of the solvent-based post-combustion CO2 capture process," Energy, Elsevier, vol. 213(C).
    7. Huang, Bin & Xu, Shisen & Gao, Shiwang & Liu, Lianbo & Tao, Jiye & Niu, Hongwei & Cai, Ming & Cheng, Jian, 2010. "Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station," Applied Energy, Elsevier, vol. 87(11), pages 3347-3354, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilkes, Mathew Dennis & Brown, Solomon, 2022. "Flexible CO2 capture for open-cycle gas turbines via vacuum-pressure swing adsorption: A model-based assessment," Energy, Elsevier, vol. 250(C).
    2. Tang, Zihan & Wu, Xiao, 2023. "Distributed predictive control guided by intelligent reboiler steam feedforward for the coordinated operation of power plant-carbon capture system," Energy, Elsevier, vol. 267(C).
    3. Skjervold, Vidar T. & Mondino, Giorgia & Riboldi, Luca & Nord, Lars O., 2023. "Investigation of control strategies for adsorption-based CO2 capture from a thermal power plant under variable load operation," Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haider Sultan & Umair Hassan Bhatti & Hafiz Ali Muhammad & Sung Chan Nam & Il Hyun Baek, 2021. "Modification of postcombustion CO2 capture process: A techno‐economic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 165-182, February.
    2. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
    3. Wang, Dandan & Li, Sheng & Liu, Feng & Gao, Lin & Sui, Jun, 2018. "Post combustion CO2 capture in power plant using low temperature steam upgraded by double absorption heat transformer," Applied Energy, Elsevier, vol. 227(C), pages 603-612.
    4. Rongrong Zhai & Hongtao Liu & Hao Wu & Hai Yu & Yongping Yang, 2018. "Analysis of Integration of MEA-Based CO 2 Capture and Solar Energy System for Coal-Based Power Plants Based on Thermo-Economic Structural Theory," Energies, MDPI, vol. 11(5), pages 1-30, May.
    5. Bello, Sara & Galán-Martín, Ángel & Feijoo, Gumersindo & Moreira, Maria Teresa & Guillén-Gosálbez, Gonzalo, 2020. "BECCS based on bioethanol from wood residues: Potential towards a carbon-negative transport and side-effects," Applied Energy, Elsevier, vol. 279(C).
    6. Wu, Ying & Chen, Xiaoping & Ma, Jiliang & Wu, Ye & Liu, Daoyin & Xie, Weiyi, 2020. "System integration optimization for coal-fired power plant with CO2 capture by Na2CO3 dry sorbents," Energy, Elsevier, vol. 211(C).
    7. Zhao, Bin & Liu, Fangzheng & Cui, Zheng & Liu, Changjun & Yue, Hairong & Tang, Siyang & Liu, Yingying & Lu, Houfang & Liang, Bin, 2017. "Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement," Applied Energy, Elsevier, vol. 185(P1), pages 362-375.
    8. Qian, Jiaxin & Wu, Jiahui & Yao, Lei & Mahmut, Saniye & Zhang, Qiang, 2021. "Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method," Energy, Elsevier, vol. 230(C).
    9. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    10. Solomon Aforkoghene Aromada & Nils Henrik Eldrup & Fredrik Normann & Lars Erik Øi, 2020. "Techno-Economic Assessment of Different Heat Exchangers for CO 2 Capture," Energies, MDPI, vol. 13(23), pages 1-27, November.
    11. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    12. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    13. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Qin, Changlei & Yin, Junjun & Feng, Bo & Ran, Jingyu & Zhang, Li & Manovic, Vasilije, 2016. "Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping," Applied Energy, Elsevier, vol. 164(C), pages 400-410.
    15. Rajpal, Sheetal & Lakhyani, Navin & Singh, Ayush Kumar & Kohli, Rishav & Kumar, Naveen, 2021. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    17. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    18. Jia, Wenlong & Yang, Fan & Li, Changjun & Huang, Ting & Song, Shuoshuo, 2021. "A unified thermodynamic framework to compute the hydrate formation conditions of acidic gas/water/alcohol/electrolyte mixtures up to 186.2 MPa," Energy, Elsevier, vol. 230(C).
    19. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    20. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921015610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.