IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6315-d453735.html
   My bibliography  Save this article

Techno-Economic Assessment of Different Heat Exchangers for CO 2 Capture

Author

Listed:
  • Solomon Aforkoghene Aromada

    (Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Kjølnes Ring 56, 3918 Porsgrunn, Norway)

  • Nils Henrik Eldrup

    (Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Kjølnes Ring 56, 3918 Porsgrunn, Norway
    SINTEF Tel-Tek, SINTEF Industri, Kjølnes Ring 30, 3918 Porsgrunn, Norway)

  • Fredrik Normann

    (Department of Energy and Environment, Chalmers University of Technology, SE-412 96 Göteborg, Sweden)

  • Lars Erik Øi

    (Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Kjølnes Ring 56, 3918 Porsgrunn, Norway)

Abstract

We examined the cost implications of selecting six different types of heat exchangers as the lean/rich heat exchanger in an amine-based CO 2 capture process. The difference in total capital cost between different capture plant scenarios due to the different costs of the heat exchangers used as the lean/rich heat exchanger, in each case, is in millions of Euros. The gasketed-plate heat exchanger (G-PHE) saves significant space, and it saves considerable costs. Selecting the G-PHE instead of the shell and tube heat exchangers (STHXs) will save €33 million–€39 million in total capital cost (CAPEX), depending on the type of STHX. About €43 million and €2 million in total installed costs (CAPEX) can be saved if the G-PHE is selected instead of the finned double-pipe heat exchanger (FDP-HX) or welded-plate heat exchanger, respectively. The savings in total annual cost is also in millions of Euros/year. Capture costs of €5/tCO 2 –€6/tCO 2 can be saved by replacing conventional STHXs with the G-PHE, and over €6/tCO 2 in the case of the FDP-HX. This is significant, and it indicates the importance of clearly stating the exact type and not just the broad classification of heat exchanger used as lean/rich heat exchanger. This is required for cost estimates to be as accurate as possible and allow for appropriate comparisons with other studies. Therefore, the gasketed-plate heat exchanger is recommended to save substantial costs. The CO 2 capture costs of all scenarios are most sensitive to the steam cost. The plate and frame heat exchangers (PHEs) scenario’s capture cost can decline from about €77/tCO 2 to €59/tCO 2 or rise to €95/tCO 2 .

Suggested Citation

  • Solomon Aforkoghene Aromada & Nils Henrik Eldrup & Fredrik Normann & Lars Erik Øi, 2020. "Techno-Economic Assessment of Different Heat Exchangers for CO 2 Capture," Energies, MDPI, vol. 13(23), pages 1-27, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6315-:d:453735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Solomon Aforkoghene Aromada & Bjørn Kvamme & Na Wei & Navid Saeidi, 2019. "Enthalpies of Hydrate Formation and Dissociation from Residual Thermodynamics," Energies, MDPI, vol. 12(24), pages 1-26, December.
    2. Li, Kangkang & Leigh, Wardhaugh & Feron, Paul & Yu, Hai & Tade, Moses, 2016. "Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements," Applied Energy, Elsevier, vol. 165(C), pages 648-659.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hrvoje Dorotić & Kristijan Čuljak & Josip Miškić & Tomislav Pukšec & Neven Duić, 2022. "Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems," Energies, MDPI, vol. 15(5), pages 1-29, February.
    2. Ma, Chunyan & Wang, Nan & Ye, Nannan & Ji, Xiaoyan, 2021. "CO2 capture using ionic liquid-based hybrid solvents from experiment to process evaluation," Applied Energy, Elsevier, vol. 304(C).
    3. Sebastian Gärtner & Thomas Marx-Schubach & Matthias Gaderer & Gerhard Schmitz & Michael Sterner, 2023. "Techno-Economic Analysis of Carbon Dioxide Separation for an Innovative Energy Concept towards Low-Emission Glass Melting," Energies, MDPI, vol. 16(5), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Tu, Te & Yang, Xing & Cui, Qiufang & Shang, Yu & Yan, Shuiping, 2022. "CO2 regeneration energy requirement of carbon capture process with an enhanced waste heat recovery from stripped gas by advanced transport membrane condenser," Applied Energy, Elsevier, vol. 323(C).
    3. Xie, Heping & Wu, Yifan & Liu, Tao & Wang, Fuhuan & Chen, Bin & Liang, Bin, 2020. "Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium," Applied Energy, Elsevier, vol. 259(C).
    4. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    5. Zhang, Weidong & Jin, Xianhang & Tu, Weiwei & Ma, Qian & Mao, Menglin & Cui, Chunhua, 2017. "Development of MEA-based CO2 phase change absorbent," Applied Energy, Elsevier, vol. 195(C), pages 316-323.
    6. Plaza, M.G. & Rubiera, F., 2019. "Evaluation of a novel multibed heat-integrated vacuum and temperature swing adsorption post-combustion CO2 capture process," Applied Energy, Elsevier, vol. 250(C), pages 916-925.
    7. Cui, Qiufang & Tu, Te & Ji, Long & Yan, Shuiping, 2021. "CO2 capture cost saving through waste heat recovery using transport membrane condenser in different solvent-based carbon capture processes," Energy, Elsevier, vol. 216(C).
    8. Rongrong Zhai & Hongtao Liu & Hao Wu & Hai Yu & Yongping Yang, 2018. "Analysis of Integration of MEA-Based CO 2 Capture and Solar Energy System for Coal-Based Power Plants Based on Thermo-Economic Structural Theory," Energies, MDPI, vol. 11(5), pages 1-30, May.
    9. Ji, Long & Yu, Hai & Li, Kangkang & Yu, Bing & Grigore, Mihaela & Yang, Qi & Wang, Xiaolong & Chen, Zuliang & Zeng, Ming & Zhao, Shuaifei, 2018. "Integrated absorption-mineralisation for low-energy CO2 capture and sequestration," Applied Energy, Elsevier, vol. 225(C), pages 356-366.
    10. Hornbostel, K. & Nguyen, D. & Bourcier, W. & Knipe, J. & Worthington, M. & McCoy, S. & Stolaroff, J., 2019. "Packed and fluidized bed absorber modeling for carbon capture with micro-encapsulated sodium carbonate solution," Applied Energy, Elsevier, vol. 235(C), pages 1192-1204.
    11. Oh, Hyun-Taek & Ju, Youngsan & Chung, Kyounghee & Lee, Chang-Ha, 2020. "Techno-economic analysis of advanced stripper configurations for post-combustion CO2 capture amine processes," Energy, Elsevier, vol. 206(C).
    12. Arshad, Nahyan & Alhajaj, Ahmed, 2023. "Process synthesis for amine-based CO2 capture from combined cycle gas turbine power plant," Energy, Elsevier, vol. 274(C).
    13. Oh, Se-Young & Kim, Jin-Kuk, 2018. "Operational optimization for part-load performance of amine-based post-combustion CO2 capture processes," Energy, Elsevier, vol. 146(C), pages 57-66.
    14. Sun, Wantong & Wei, Na & Zhao, Jinzhou & Kvamme, Bjørn & Zhou, Shouwei & Zhang, Liehui & Almenningen, Stian & Kuznetsova, Tatiana & Ersland, Geir & Li, Qingping & Pei, Jun & Li, Cong & Xiong, Chenyang, 2022. "Imitating possible consequences of drilling through marine hydrate reservoir," Energy, Elsevier, vol. 239(PA).
    15. Martin Hammerschmid & Alexander Bartik & Florian Benedikt & Marton Veress & Simon Pratschner & Stefan Müller & Hermann Hofbauer, 2023. "Economic and Ecological Impacts on the Integration of Biomass-Based SNG and FT Diesel in the Austrian Energy System," Energies, MDPI, vol. 16(16), pages 1-29, August.
    16. Pereira, Luís M.C. & Vega, Lourdes F., 2018. "A systematic approach for the thermodynamic modelling of CO2-amine absorption process using molecular-based models," Applied Energy, Elsevier, vol. 232(C), pages 273-291.
    17. Tian, Di & Qu, Zhiguo & Zhang, Jianfei, 2023. "Electrochemical condition optimization and techno-economic analysis on the direct CO2 electroreduction of flue gas," Applied Energy, Elsevier, vol. 351(C).
    18. Bjørn Kvamme & Matthew Clarke, 2021. "Hydrate Phase Transition Kinetic Modeling for Nature and Industry–Where Are We and Where Do We Go?," Energies, MDPI, vol. 14(14), pages 1-47, July.
    19. Dea Hyun Moon & Jun Eu & Wonhee Lee & Young Eun Kim & Ki Tae Park & You Na Ko & Soon Kwan Jeong & Min Hye Youn, 2020. "Comparison of reactions with different calcium sources for CaCO3 production using carbonic anhydrase," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 898-906, October.
    20. Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6315-:d:453735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.