IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v303y2021ics0306261921010473.html
   My bibliography  Save this article

Particle-Gaseous pollutant emissions and cost of global biomass supply chain via maritime transportation: Full-scale synergy model

Author

Listed:
  • Zahraee, Seyed Mojib
  • Rahimpour Golroudbary, Saeed
  • Shiwakoti, Nirajan
  • Stasinopoulos, Peter

Abstract

Environmental and economic issues in the maritime transportation and logistics industry have historically received less stakeholder attention than aviation and overland freight sectors. Stakeholders in the port industry have gradually started paying attention to emissions and cost issues across all the sectors, such as supply chains. Global biomass supply chain is one of the main sectors which has not been addressed in publishedliterature.To address this gap, this study aims to develop a dynamic full-scale synergy model to assess cost-mass flow, particulate matter emissions, and air pollutants for maritime transportation of the global crude palm oil biomass supply chain. Focusing on leading producers of palm oil worldwide, we have analyzed a total of 93 sea routes from Malaysia and Indonesia to main export markets in the US, Europe, and Asia. The analysis distinguishes three freight categories: light, medium-weight, and heavy for different sizes of capacity and types of container ships based on the twenty-foot equivalent unit (TEU). The findings highlight the dependency of greenhouse gas (GHG) emissions level on other factors such as technology, size, and mass flow used for container ships. The results also show a strong relationship between GHG emitted and the type of container ship in a systemic view. A ship with higher TEU contributes to the higher transported amount and lower GHG emissions in the long term. To conclude, the results would increase port industry stakeholders’ understanding of developing energy policies and managerial strategies for low cost and low carbon fuels technologies.

Suggested Citation

  • Zahraee, Seyed Mojib & Rahimpour Golroudbary, Saeed & Shiwakoti, Nirajan & Stasinopoulos, Peter, 2021. "Particle-Gaseous pollutant emissions and cost of global biomass supply chain via maritime transportation: Full-scale synergy model," Applied Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921010473
    DOI: 10.1016/j.apenergy.2021.117687
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921010473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    2. Chen, Guangwu & Wiedmann, Thomas & Wang, Yafei & Hadjikakou, Michalis, 2016. "Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1082-1092.
    3. Kohlheb, Norbert & Krausmann, Fridolin, 2009. "Land use change, biomass production and HANPP: The case of Hungary 1961-2005," Ecological Economics, Elsevier, vol. 69(2), pages 292-300, December.
    4. Wu, X.F. & Chen, G.Q., 2019. "Global overview of crude oil use: From source to sink through inter-regional trade," Energy Policy, Elsevier, vol. 128(C), pages 476-486.
    5. Kan, S.Y. & Chen, B. & Wu, X.F. & Chen, Z.M. & Chen, G.Q., 2019. "Natural gas overview for world economy: From primary supply to final demand via global supply chains," Energy Policy, Elsevier, vol. 124(C), pages 215-225.
    6. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    7. Erb, Karl-Heinz & Krausmann, Fridolin & Lucht, Wolfgang & Haberl, Helmut, 2009. "Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption," Ecological Economics, Elsevier, vol. 69(2), pages 328-334, December.
    8. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    9. Joshi, Girdhar & Pandey, Jitendra K. & Rana, Sravendra & Rawat, Devendra S., 2017. "Challenges and opportunities for the application of biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 850-866.
    10. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    11. Matzenberger, Julian & Kranzl, Lukas & Tromborg, Eric & Junginger, Martin & Daioglou, Vassilis & Sheng Goh, Chun & Keramidas, Kimon, 2015. "Future perspectives of international bioenergy trade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 926-941.
    12. Wang, H. & Ang, B.W., 2018. "Assessing the role of international trade in global CO2 emissions: An index decomposition analysis approach," Applied Energy, Elsevier, vol. 218(C), pages 146-158.
    13. Ji, Xi & Han, Mengyao & Ulgiati, Sergio, 2020. "Optimal allocation of direct and embodied arable land associated to urban economy: Understanding the options deriving from economic globalization," Land Use Policy, Elsevier, vol. 91(C).
    14. Chen, G.Q. & Wu, X.F., 2017. "Energy overview for globalized world economy: Source, supply chain and sink," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 735-749.
    15. Chen, B. & Li, J.S. & Wu, X.F. & Han, M.Y. & Zeng, L. & Li, Z. & Chen, G.Q., 2018. "Global energy flows embodied in international trade: A combination of environmentally extended input–output analysis and complex network analysis," Applied Energy, Elsevier, vol. 210(C), pages 98-107.
    16. Zhang, Fengli & Johnson, Dana M. & Johnson, Mark A., 2012. "Development of a simulation model of biomass supply chain for biofuel production," Renewable Energy, Elsevier, vol. 44(C), pages 380-391.
    17. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    18. How, Bing Shen & Ngan, Sue Lin & Hong, Boon Hooi & Lam, Hon Loong & Ng, Wendy Pei Qin & Yusup, Suzana & Ghani, Wan Azlina Wan Abd Karim & Kansha, Yasuki & Chan, Yi Herng & Cheah, Kin Wai & Shahbaz, Mu, 2019. "An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Prinz, Robert & Väätäinen, Kari & Laitila, Juha & Sikanen, Lauri & Asikainen, Antti, 2019. "Analysis of energy efficiency of forest chip supply systems using discrete-event simulation," Applied Energy, Elsevier, vol. 235(C), pages 1369-1380.
    20. Lam, Hon Loong & Varbanov, Petar & Klemeš, Jiří, 2010. "Minimising carbon footprint of regional biomass supply chains," Resources, Conservation & Recycling, Elsevier, vol. 54(5), pages 303-309.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Mojib Zahraee & Nirajan Shiwakoti & Peter Stasinopoulos, 2024. "Metaheuristic Optimization of the Agricultural Biomass Supply Chain: Integrating Strategic, Tactical, and Operational Planning," Energies, MDPI, vol. 17(16), pages 1-35, August.
    2. Zahraee, Seyed Mojib & Shiwakoti, Nirajan & Stasinopoulos, Peter, 2022. "Application of geographical information system and agent-based modeling to estimate particle-gaseous pollutantemissions and transportation cost of woody biomass supply chain," Applied Energy, Elsevier, vol. 309(C).
    3. Vinicius Andrade dos Santos & Patrícia Pereira da Silva & Luís Manuel Ventura Serrano, 2022. "The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels," Energies, MDPI, vol. 15(10), pages 1-30, May.
    4. Yang, Weixin & Pan, Lingying & Ding, Qinyi, 2023. "Dynamic analysis of natural gas substitution for crude oil: Scenario simulation and quantitative evaluation," Energy, Elsevier, vol. 282(C).
    5. Li, Hao & Huang, Wentao & Li, Ran & Yu, Moduo & Tai, Nengling & Zhou, Songli, 2023. "The multi-visit-multi-voyage scheduling of the heterogeneous shuttle tanker fleet via inventory-oriented joint planning," Applied Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Xi & Liu, Yifang & Meng, Jing & Wu, Xudong, 2020. "Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers," Applied Energy, Elsevier, vol. 276(C).
    2. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    3. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    4. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    5. Zahraee, Seyed Mojib & Shiwakoti, Nirajan & Stasinopoulos, Peter, 2022. "Application of geographical information system and agent-based modeling to estimate particle-gaseous pollutantemissions and transportation cost of woody biomass supply chain," Applied Energy, Elsevier, vol. 309(C).
    6. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    7. Han, Mengyao & Xiong, Jiao & Yang, Yu, 2023. "Comparisons between direct and embodied natural gas networks: Topology, dependency and vulnerability," Energy, Elsevier, vol. 280(C).
    8. Jinghui Liu & Tingting Geng & Xingwei Wang & Guojin Qin, 2020. "Determinants of Oil Footprints Embodied in Sino-US Trade: A Perspective from the Globalizing World," Energies, MDPI, vol. 13(15), pages 1-26, July.
    9. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
    10. Ji, Xi & Su, Pinyi & Liu, Yifang & Wu, Guowei & Wu, Xudong, 2023. "Mutual complementarity of arable land use in the Sino-Africa trade: Evidence from the global supply chain," Land Use Policy, Elsevier, vol. 128(C).
    11. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    12. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    13. Cheng, Mengyao & Wu, Jialu & Li, Chaohui & Jia, Yuanxin & Xia, Xiaohua, 2023. "Tele-connection of global agricultural land network: Incorporating complex network approach with multi-regional input-output analysis," Land Use Policy, Elsevier, vol. 125(C).
    14. Zhang, Yu & Tian, Kailan & Li, Xiaomeng & Jiang, Xuemei & Yang, Cuihong, 2022. "From globalization to regionalization? Assessing its potential environmental and economic effects," Applied Energy, Elsevier, vol. 310(C).
    15. Xu, Zhenci & Zhang, Di & McCord, Paul & Gong, Mimi & Liu, Jianguo, 2019. "Shift in a national virtual energy network," Applied Energy, Elsevier, vol. 242(C), pages 561-569.
    16. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    17. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2023. "Globalization of forest land use: Increasing threats on climate-vulnerable regions," Land Use Policy, Elsevier, vol. 132(C).
    18. Song, Zhouying & Zhu, Qiaoling & Han, Mengyao, 2021. "Tele-connection of global crude oil network: Comparisons between direct trade and embodied flows," Energy, Elsevier, vol. 217(C).
    19. Kan, S.Y. & Chen, B. & Wu, X.F. & Chen, Z.M. & Chen, G.Q., 2019. "Natural gas overview for world economy: From primary supply to final demand via global supply chains," Energy Policy, Elsevier, vol. 124(C), pages 215-225.
    20. Wang, Qiang & Song, Xiaoxin, 2021. "Why do China and India burn 60% of the world’s coal? A decomposition analysis from a global perspective," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921010473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.