IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v303y2021ics0306261921009776.html
   My bibliography  Save this article

Simulation and power quality analysis of a Loose-Coupled bipolar DC microgrid in an office building

Author

Listed:
  • Wang, Ruiting
  • Feng, Wei
  • Xue, Huijie
  • Gerber, Daniel
  • Li, Yutong
  • Hao, Bin
  • Wang, Yibo

Abstract

With distributed generation and battery storage technologies thriving in microgrids, the use of direct current (DC) microgrids in the building sector offers multiple advantages in energy efficiency and power quality compared with alternating current (AC) systems. This study developed a new concept of a loose-coupled bipolar DC building power system. The concept was used to design a real-world office building in Shenzhen, China. A power system model was developed to study the stability and control of the DC power system and to verify DC power quality. The design and modeling of the DC power control system is discussed in detail. The study developed a few common fault scenarios in DC building microgrids that were simulated in the MATLAB-Simulink environment to validate the design of a loose-coupled bipolar DC system. The results indicate that the proposed loose-coupled bipolar DC system schema, when implemented with proper control algorithms, can achieve good fault-tolerant performance with reliable power quality, even during disruptive system events.

Suggested Citation

  • Wang, Ruiting & Feng, Wei & Xue, Huijie & Gerber, Daniel & Li, Yutong & Hao, Bin & Wang, Yibo, 2021. "Simulation and power quality analysis of a Loose-Coupled bipolar DC microgrid in an office building," Applied Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921009776
    DOI: 10.1016/j.apenergy.2021.117606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921009776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerber, Daniel L. & Vossos, Vagelis & Feng, Wei & Marnay, Chris & Nordman, Bruce & Brown, Richard, 2018. "A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings," Applied Energy, Elsevier, vol. 210(C), pages 1167-1187.
    2. Kaitlyn J. Bunker & Wayne W. Weaver, 2018. "Optimal Multidimensional Droop Control for Wind Resources in DC Microgrids," Energies, MDPI, vol. 11(7), pages 1-20, July.
    3. Julio Barros & Matilde de Apráiz & Ramón I. Diego, 2019. "Power Quality in DC Distribution Networks," Energies, MDPI, vol. 12(5), pages 1-13, March.
    4. Van den Broeck, Giel & Stuyts, Jeroen & Driesen, Johan, 2018. "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, Elsevier, vol. 229(C), pages 281-288.
    5. Mahdavyfakhr, Mohammad & Rashidirad, Nasim & Hamzeh, Mohsen & Sheshyekani, Keyhan & Afjei, Ebrahim, 2017. "Stability improvement of DC grids involving a large number of parallel solar power optimizers: An active damping approach," Applied Energy, Elsevier, vol. 203(C), pages 364-372.
    6. Tayab, Usman Bashir & Roslan, Mohd Azrik Bin & Hwai, Leong Jenn & Kashif, Muhammad, 2017. "A review of droop control techniques for microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 717-727.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    2. Chen, Xiaoyuan & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Zhou, Pang & Yang, Ruohuan & Shen, Boyang, 2023. "Energy reliability enhancement of a data center/wind hybrid DC network using superconducting magnetic energy storage," Energy, Elsevier, vol. 263(PA).
    3. Gerber, Daniel L. & Nordman, Bruce & Brown, Richard & Poon, Jason, 2023. "Cost analysis of distributed storage in AC and DC microgrids," Applied Energy, Elsevier, vol. 344(C).
    4. Hajar Doubabi & Issam Salhi & Najib Essounbouli, 2022. "A Novel Control Technique for Voltage Balancing in Bipolar DC Microgrids," Energies, MDPI, vol. 15(9), pages 1-14, May.
    5. Ferahtia, Seydali & Rezk, Hegazy & Olabi, A.G. & Alhumade, Hesham & Bamufleh, Hisham S. & Doranehgard, Mohammad Hossein & Abdelkareem, Mohammad Ali, 2022. "Optimal techno-economic multi-level energy management of renewable-based DC microgrid for commercial buildings applications," Applied Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerber, Daniel L. & Ghatpande, Omkar A. & Nazir, Moazzam & Heredia, Willy G. Bernal & Feng, Wei & Brown, Richard E., 2022. "Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings," Applied Energy, Elsevier, vol. 308(C).
    2. Hasan Erteza Gelani & Faizan Dastgeer & Mashood Nasir & Sidra Khan & Josep M. Guerrero, 2021. "AC vs. DC Distribution Efficiency: Are We on the Right Path?," Energies, MDPI, vol. 14(13), pages 1-26, July.
    3. Hallemans, L. & Ravyts, S. & Govaerts, G. & Fekriasl, S. & Van Tichelen, P. & Driesen, J., 2022. "A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids," Applied Energy, Elsevier, vol. 310(C).
    4. Yamashita, Daniela Yassuda & Vechiu, Ionel & Gaubert, Jean-Paul, 2020. "A review of hierarchical control for building microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    5. Carlos Roldán-Porta & Carlos Roldán-Blay & Guillermo Escrivá-Escrivá & Eduardo Quiles, 2019. "Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids," Sustainability, MDPI, vol. 11(19), pages 1-22, October.
    6. Gerber, Daniel L. & Nordman, Bruce & Brown, Richard & Poon, Jason, 2023. "Cost analysis of distributed storage in AC and DC microgrids," Applied Energy, Elsevier, vol. 344(C).
    7. Van den Broeck, Giel & Stuyts, Jeroen & Driesen, Johan, 2018. "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, Elsevier, vol. 229(C), pages 281-288.
    8. Andrea Mariscotti, 2021. "Power Quality Phenomena, Standards, and Proposed Metrics for DC Grids," Energies, MDPI, vol. 14(20), pages 1-41, October.
    9. Deng Xu & Yong Long, 2019. "The Impact of Government Subsidy on Renewable Microgrid Investment Considering Double Externalities," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    10. Quynh T.T Tran & Eleonora Riva Sanseverino & Gaetano Zizzo & Maria Luisa Di Silvestre & Tung Lam Nguyen & Quoc-Tuan Tran, 2020. "Real-Time Minimization Power Losses by Driven Primary Regulation in Islanded Microgrids," Energies, MDPI, vol. 13(2), pages 1-17, January.
    11. Paula Remigio-Carmona & Juan-José González-de-la-Rosa & Olivia Florencias-Oliveros & José-María Sierra-Fernández & Javier Fernández-Morales & Manuel-Jesús Espinosa-Gavira & Agustín Agüera-Pérez & José, 2022. "Current Status and Future Trends of Power Quality Analysis," Energies, MDPI, vol. 15(7), pages 1-18, March.
    12. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Ilman Sulaeman & Gautham Ram Chandra Mouli & Aditya Shekhar & Pavol Bauer, 2021. "Comparison of AC and DC Nanogrid for Office Buildings with EV Charging, PV and Battery Storage," Energies, MDPI, vol. 14(18), pages 1-22, September.
    14. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    15. Juan-José González de-la-Rosa & Manuel Pérez-Donsión, 2020. "Special Issue “Analysis for Power Quality Monitoring”," Energies, MDPI, vol. 13(3), pages 1-6, January.
    16. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    17. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    18. Elutunji Buraimoh & Innocent E. Davidson & Fernando Martinez-Rodrigo, 2019. "Fault Ride-Through Enhancement of Grid Supporting Inverter-Based Microgrid Using Delayed Signal Cancellation Algorithm Secondary Control," Energies, MDPI, vol. 12(20), pages 1-26, October.
    19. Rémy Cleenwerck & Hakim Azaioud & Majid Vafaeipour & Thierry Coosemans & Jan Desmet, 2023. "Impact Assessment of Electric Vehicle Charging in an AC and DC Microgrid: A Comparative Study," Energies, MDPI, vol. 16(7), pages 1-17, April.
    20. Hirwa, Jusse & Zolan, Alexander & Becker, William & Flamand, Tülay & Newman, Alexandra, 2023. "Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921009776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.