IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v203y2017icp364-372.html
   My bibliography  Save this article

Stability improvement of DC grids involving a large number of parallel solar power optimizers: An active damping approach

Author

Listed:
  • Mahdavyfakhr, Mohammad
  • Rashidirad, Nasim
  • Hamzeh, Mohsen
  • Sheshyekani, Keyhan
  • Afjei, Ebrahim

Abstract

This paper aims to address a new challenge associated with parallel operation of a large number of solar power optimizers in dc power grids. It is first shown that as the number of solar power optimizers increases the stability margin of the host dc power grid decreases. Then, to circumvent the stability problem, a novel active damping approach is presented which can improve the stability of dc grids dominated by a large number of solar power optimizers. In this approach, an inner feedback loop is added to the control system of a voltage source dc-dc converter regulating the dc grid voltage. The feedback transfer function is properly tuned to achieve the highest stability margin of dc grid. The presented approach works robustly for any number of solar power optimizers. Different simulation results are provided to confirm the effectiveness of the proposed approach.

Suggested Citation

  • Mahdavyfakhr, Mohammad & Rashidirad, Nasim & Hamzeh, Mohsen & Sheshyekani, Keyhan & Afjei, Ebrahim, 2017. "Stability improvement of DC grids involving a large number of parallel solar power optimizers: An active damping approach," Applied Energy, Elsevier, vol. 203(C), pages 364-372.
  • Handle: RePEc:eee:appene:v:203:y:2017:i:c:p:364-372
    DOI: 10.1016/j.apenergy.2017.06.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917307808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.06.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balato, M. & Costanzo, L. & Vitelli, M., 2015. "Series–Parallel PV array re-configuration: Maximization of the extraction of energy and much more," Applied Energy, Elsevier, vol. 159(C), pages 145-160.
    2. Trujillo, C.L. & Velasco, D. & Figueres, E. & Garcerá, G. & Ortega, R., 2011. "Modeling and control of a push-pull converter for photovoltaic microinverters operating in island mode," Applied Energy, Elsevier, vol. 88(8), pages 2824-2834, August.
    3. Sanchez, Santiago & Molinas, Marta & Degano, Marco & Zanchetta, Pericle, 2014. "Stability evaluation of a DC micro-grid and future interconnection to an AC system," Renewable Energy, Elsevier, vol. 62(C), pages 649-656.
    4. Saravanan, S. & Ramesh Babu, N., 2017. "Analysis and implementation of high step-up DC-DC converter for PV based grid application," Applied Energy, Elsevier, vol. 190(C), pages 64-72.
    5. Rizzo, Santi Agatino & Scelba, Giacomo, 2015. "ANN based MPPT method for rapidly variable shading conditions," Applied Energy, Elsevier, vol. 145(C), pages 124-132.
    6. Ahmed, Jubaer & Salam, Zainal, 2015. "An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency," Applied Energy, Elsevier, vol. 150(C), pages 97-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouzid, Allal El Moubarek & Chaoui, Hicham & Zerrougui, Mohamed & Ben Elghali, Seifeddine & Benbouzid, Mohamed, 2021. "Robust control based on linear matrix inequalities criterion of single phase distributed electrical energy systems operating in islanded and grid-connected modes," Applied Energy, Elsevier, vol. 292(C).
    2. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    3. Wang, Ruiting & Feng, Wei & Xue, Huijie & Gerber, Daniel & Li, Yutong & Hao, Bin & Wang, Yibo, 2021. "Simulation and power quality analysis of a Loose-Coupled bipolar DC microgrid in an office building," Applied Energy, Elsevier, vol. 303(C).
    4. Van den Broeck, Giel & Stuyts, Jeroen & Driesen, Johan, 2018. "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, Elsevier, vol. 229(C), pages 281-288.
    5. Carlos Roldán-Porta & Carlos Roldán-Blay & Guillermo Escrivá-Escrivá & Eduardo Quiles, 2019. "Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids," Sustainability, MDPI, vol. 11(19), pages 1-22, October.
    6. Yaghoobi, Jalil & Islam, Monirul & Mithulananthan, Nadarajah, 2018. "Analytical approach to assess the loadability of unbalanced distribution grid with rooftop PV units," Applied Energy, Elsevier, vol. 211(C), pages 358-367.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bradai, R. & Boukenoui, R. & Kheldoun, A. & Salhi, H. & Ghanes, M. & Barbot, J-P. & Mellit, A., 2017. "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied Energy, Elsevier, vol. 199(C), pages 416-429.
    2. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    3. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    4. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    5. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    6. Fathabadi, Hassan, 2016. "Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking," Energy, Elsevier, vol. 94(C), pages 466-475.
    7. Belkaid, A. & Colak, I. & Isik, O., 2016. "Photovoltaic maximum power point tracking under fast varying of solar radiation," Applied Energy, Elsevier, vol. 179(C), pages 523-530.
    8. Hong, Ying-Yi & Beltran, Angelo A. & Paglinawan, Arnold C., 2018. "A robust design of maximum power point tracking using Taguchi method for stand-alone PV system," Applied Energy, Elsevier, vol. 211(C), pages 50-63.
    9. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    10. Fathabadi, Hassan, 2016. "Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems," Applied Energy, Elsevier, vol. 173(C), pages 448-459.
    11. Li, Qiyu & Zhao, Shengdun & Wang, Mengqi & Zou, Zhongyue & Wang, Bin & Chen, Qixu, 2017. "An improved perturbation and observation maximum power point tracking algorithm based on a PV module four-parameter model for higher efficiency," Applied Energy, Elsevier, vol. 195(C), pages 523-537.
    12. Fathabadi, Hassan, 2017. "Novel fast and high accuracy maximum power point tracking method for hybrid photovoltaic/fuel cell energy conversion systems," Renewable Energy, Elsevier, vol. 106(C), pages 232-242.
    13. Jordehi, A. Rezaee, 2016. "Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1127-1138.
    14. He, Wei & Wang, Yang & Shaheed, Mohammad Hasan, 2015. "Maximum power point tracking (MPPT) of a scale-up pressure retarded osmosis (PRO) osmotic power plant," Applied Energy, Elsevier, vol. 158(C), pages 584-596.
    15. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
    16. Fathabadi, Hassan, 2017. "Novel standalone hybrid solar/wind/fuel cell/battery power generation system," Energy, Elsevier, vol. 140(P1), pages 454-465.
    17. Fathabadi, Hassan, 2017. "Novel grid-connected solar/wind powered electric vehicle charging station with vehicle-to-grid technology," Energy, Elsevier, vol. 132(C), pages 1-11.
    18. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    19. Obeidi, Nabil & Kermadi, Mostefa & Belmadani, Bachir & Allag, Abdelkrim & Achour, Lazhar & Mesbahi, Nadhir & Mekhilef, Saad, 2023. "A modified current sensorless approach for maximum power point tracking of partially shaded photovoltaic systems," Energy, Elsevier, vol. 263(PA).
    20. Camilo, Jones C. & Guedes, Tatiana & Fernandes, Darlan A. & Melo, J.D. & Costa, F.F. & Sguarezi Filho, Alfeu J., 2019. "A maximum power point tracking for photovoltaic systems based on Monod equation," Renewable Energy, Elsevier, vol. 130(C), pages 428-438.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:203:y:2017:i:c:p:364-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.