Bayesian calibration of building energy models for uncertainty analysis through test cells monitoring
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.116118
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chaudhary, Gaurav & New, Joshua & Sanyal, Jibonananda & Im, Piljae & O’Neill, Zheng & Garg, Vishal, 2016. "Evaluation of “Autotune” calibration against manual calibration of building energy models," Applied Energy, Elsevier, vol. 182(C), pages 115-134.
- Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
- Lim, Hyunwoo & Zhai, Zhiqiang (John), 2018. "Influences of energy data on Bayesian calibration of building energy model," Applied Energy, Elsevier, vol. 231(C), pages 686-698.
- Cattarin, G. & Causone, F. & Kindinis, A. & Pagliano, L., 2016. "Outdoor test cells for building envelope experimental characterisation – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 606-625.
- Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
- Manfren, Massimiliano & Aste, Niccolò & Moshksar, Reza, 2013. "Calibration and uncertainty analysis for computer models – A meta-model based approach for integrated building energy simulation," Applied Energy, Elsevier, vol. 103(C), pages 627-641.
- Michelle Norris & Patrick Shiels, 2004. "Regular national report on housing developments in European countries : synthesis report," Open Access publications 10197/5368, Research Repository, University College Dublin.
- Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
- Chen, Jianli & Gao, Xinghua & Hu, Yuqing & Zeng, Zhaoyun & Liu, Yanan, 2019. "A meta-model-based optimization approach for fast and reliable calibration of building energy models," Energy, Elsevier, vol. 188(C).
- Gao, Hao & Koch, Christian & Wu, Yupeng, 2019. "Building information modelling based building energy modelling: A review," Applied Energy, Elsevier, vol. 238(C), pages 320-343.
- Ángel Luis León-Rodríguez & Rafael Suárez & Pedro Bustamante & Miguel Ángel Campano & David Moreno-Rangel, 2017. "Design and Performance of Test Cells as an Energy Evaluation Model of Facades in a Mediterranean Building Area," Energies, MDPI, vol. 10(11), pages 1-16, November.
- Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
- Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
- Enrico Fabrizio & Valentina Monetti, 2015. "Methodologies and Advancements in the Calibration of Building Energy Models," Energies, MDPI, vol. 8(4), pages 1-27, March.
- Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2017. "Low-cost energy meter calibration method for measurement and verification," Applied Energy, Elsevier, vol. 188(C), pages 563-575.
- Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
- Fumo, Nelson, 2014. "A review on the basics of building energy estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 53-60.
- Chan, A.L.S., 2016. "Generation of typical meteorological years using genetic algorithm for different energy systems," Renewable Energy, Elsevier, vol. 90(C), pages 1-13.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Prataviera, Enrico & Zarrella, Angelo & Morejohn, Joshua & Narayanan, Vinod, 2024. "Exploiting district cooling network and urban building energy modeling for large-scale integrated energy conservation analyses," Applied Energy, Elsevier, vol. 356(C).
- Oh, Jinwoo & Han, Ukmin & Jung, Yujun & Kang, Yong Tae & Lee, Hoseong, 2024. "Advancing waste heat potential assessment for net-zero emissions: A review of demand-based thermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- Matthew, Chris, 2024. "The multiple benefits of current and potential energy efficiency policies: A Scottish islands case study," Energy Policy, Elsevier, vol. 187(C).
- Sun, Shaobo & Shan, Kui & Wang, Shengwei, 2022. "An online robust sequencing control strategy for identical chillers using a probabilistic approach concerning flow measurement uncertainties," Applied Energy, Elsevier, vol. 317(C).
- Valeria Todeschi & Roberto Boghetti & Jérôme H. Kämpf & Guglielmina Mutani, 2021. "Evaluation of Urban-Scale Building Energy-Use Models and Tools—Application for the City of Fribourg, Switzerland," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
- Prataviera, Enrico & Vivian, Jacopo & Lombardo, Giulia & Zarrella, Angelo, 2022. "Evaluation of the impact of input uncertainty on urban building energy simulations using uncertainty and sensitivity analysis," Applied Energy, Elsevier, vol. 311(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
- Hou, D. & Hassan, I.G. & Wang, L., 2021. "Review on building energy model calibration by Bayesian inference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Gholami, M. & Torreggiani, D. & Tassinari, P. & Barbaresi, A., 2021. "Narrowing uncertainties in forecasting urban building energy demand through an optimal archetyping method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Chen, Jianli & Gao, Xinghua & Hu, Yuqing & Zeng, Zhaoyun & Liu, Yanan, 2019. "A meta-model-based optimization approach for fast and reliable calibration of building energy models," Energy, Elsevier, vol. 188(C).
- Edwards, Richard E. & New, Joshua & Parker, Lynne E. & Cui, Borui & Dong, Jin, 2017. "Constructing large scale surrogate models from big data and artificial intelligence," Applied Energy, Elsevier, vol. 202(C), pages 685-699.
- Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
- Carlos Fernández Bandera & Germán Ramos Ruiz, 2017. "Towards a New Generation of Building Envelope Calibration," Energies, MDPI, vol. 10(12), pages 1-19, December.
- Enríquez, R. & Jiménez, M.J. & Heras, M.R., 2017. "Towards non-intrusive thermal load Monitoring of buildings: BES calibration," Applied Energy, Elsevier, vol. 191(C), pages 44-54.
- Ohlsson, K.E. Anders & Olofsson, Thomas, 2021. "Benchmarking the practice of validation and uncertainty analysis of building energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
- Prataviera, Enrico & Vivian, Jacopo & Lombardo, Giulia & Zarrella, Angelo, 2022. "Evaluation of the impact of input uncertainty on urban building energy simulations using uncertainty and sensitivity analysis," Applied Energy, Elsevier, vol. 311(C).
- Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
- Chaudhary, Gaurav & New, Joshua & Sanyal, Jibonananda & Im, Piljae & O’Neill, Zheng & Garg, Vishal, 2016. "Evaluation of “Autotune” calibration against manual calibration of building energy models," Applied Energy, Elsevier, vol. 182(C), pages 115-134.
- Gatt, Damien & Yousif, Charles & Cellura, Maurizio & Camilleri, Liberato & Guarino, Francesco, 2020. "Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
- Aste, Niccolò & Manfren, Massimiliano & Marenzi, Giorgia, 2017. "Building Automation and Control Systems and performance optimization: A framework for analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 313-330.
- Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
- Zhu, Chuanqi & Tian, Wei & Yin, Baoquan & Li, Zhanyong & Shi, Jiaxin, 2020. "Uncertainty calibration of building energy models by combining approximate Bayesian computation and machine learning algorithms," Applied Energy, Elsevier, vol. 268(C).
- Yang, Tao & Pan, Yiqun & Mao, Jiachen & Wang, Yonglong & Huang, Zhizhong, 2016. "An automated optimization method for calibrating building energy simulation models with measured data: Orientation and a case study," Applied Energy, Elsevier, vol. 179(C), pages 1220-1231.
- Lim, Hyunwoo & Zhai, Zhiqiang (John), 2018. "Influences of energy data on Bayesian calibration of building energy model," Applied Energy, Elsevier, vol. 231(C), pages 686-698.
- Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
- Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
More about this item
Keywords
Bayesian calibration; Sensitivity analysis; Uncertainty analysis; Building energy modelling; Mediterranean climate; Housing stock;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315361. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.