IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920312733.html
   My bibliography  Save this article

Would firm generators facilitate or deter variable renewable energy in a carbon-free electricity system?

Author

Listed:
  • Yuan, Mengyao
  • Tong, Fan
  • Duan, Lei
  • Dowling, Jacqueline A.
  • Davis, Steven J.
  • Lewis, Nathan S.
  • Caldeira, Ken

Abstract

To reduce atmospheric carbon dioxide emissions and mitigate impacts of climate change, countries across the world have mandated quotas for renewable electricity. But a question has remained largely unexplored: would low-cost, firm, zero-carbon electricity generation technologies enhance—or would they displace—deployment of variable renewable electricity generation technologies, i.e., wind and solar photovoltaics, in a least-cost, fully reliable, and deeply decarbonized electricity system? To address this question, we modeled idealized electricity systems based on historical weather data and considered only technoeconomic factors. We did not apply a predetermined use model. We found that cost reductions in firm generation technologies (starting at current costs, ramping down to nearly zero) uniformly resulted in increased penetration of the firm technologies and decreased penetration of variable renewable electricity generation, in electricity systems where technology deployment is primarily driven by relative costs, and across a wide array of future technology cost assumptions. Similarly, reduced costs of variable renewable electricity (starting at current costs, ramping down to nearly zero) drove out firm generation technologies. Yet relative to deployment of “must-run” firm generation technologies, and when the studied firm technologies have high fixed costs relative to variable costs, the addition of flexibility to firm generation technologies had only limited impacts on the system cost, less than a 9% system cost reduction in our idealized model. These results reveal that policies and funding that support particular technologies for low- or zero-carbon electricity generation can inhibit the development of other low- or zero-carbon alternatives.

Suggested Citation

  • Yuan, Mengyao & Tong, Fan & Duan, Lei & Dowling, Jacqueline A. & Davis, Steven J. & Lewis, Nathan S. & Caldeira, Ken, 2020. "Would firm generators facilitate or deter variable renewable energy in a carbon-free electricity system?," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312733
    DOI: 10.1016/j.apenergy.2020.115789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Garrote, Luis, 2019. "Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants," Applied Energy, Elsevier, vol. 256(C).
    2. Roth, Michael Buchdahl & Jaramillo, Paulina, 2017. "Going nuclear for climate mitigation: An analysis of the cost effectiveness of preserving existing U.S. nuclear power plants as a carbon avoidance strategy," Energy, Elsevier, vol. 131(C), pages 67-77.
    3. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    4. Cany, C. & Mansilla, C. & Mathonnière, G. & da Costa, P., 2018. "Nuclear power supply: Going against the misconceptions. Evidence of nuclear flexibility from the French experience," Energy, Elsevier, vol. 151(C), pages 289-296.
    5. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    6. Marc Poumadère & Raquel Bertoldo & Jaleh Samadi, 2011. "Public perceptions and governance of controversial technologies to tackle climate change: nuclear power, carbon capture and storage, wind, and geoengineering," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(5), pages 712-727, September.
    7. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    8. Alexander E. MacDonald & Christopher T. M. Clack & Anneliese Alexander & Adam Dunbar & James Wilczak & Yuanfu Xie, 2016. "Future cost-competitive electricity systems and their impact on US CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 526-531, May.
    9. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    10. Jeff Tollefson, 2018. "Can the world kick its fossil-fuel addiction fast enough?," Nature, Nature, vol. 556(7702), pages 422-425, April.
    11. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    12. Haratyk, Geoffrey, 2017. "Early nuclear retirements in deregulated U.S. markets: Causes, implications and policy options," Energy Policy, Elsevier, vol. 110(C), pages 150-166.
    13. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouma, Andrew T. & Wei, Quantum J. & Parsons, John E. & Buongiorno, Jacopo & Lienhard, John H., 2022. "Energy and water without carbon: Integrated desalination and nuclear power at Diablo Canyon," Applied Energy, Elsevier, vol. 323(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Chalendar, Jacques A. & Benson, Sally M., 2021. "A physics-informed data reconciliation framework for real-time electricity and emissions tracking," Applied Energy, Elsevier, vol. 304(C).
    2. SarahM. Jordaan & Afreen Siddiqi & William Kakenmaster & AliceC. Hill, 2019. "The Climate Vulnerabilities of Global Nuclear Power," Global Environmental Politics, MIT Press, vol. 19(4), pages 3-13, November.
    3. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    4. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    5. Schmeda-Lopez, Diego & McConnaughy, Thomas B. & McFarland, Eric W., 2018. "Radiation enhanced chemical production: Improving the value proposition of nuclear power," Energy, Elsevier, vol. 162(C), pages 491-504.
    6. Zhe Dong & Miao Liu & Di Jiang & Xiaojin Huang & Yajun Zhang & Zuoyi Zhang, 2018. "Automatic Generation Control of Nuclear Heating Reactor Power Plants," Energies, MDPI, vol. 11(10), pages 1-18, October.
    7. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Qian Zhang & Christopher Kennedy & Tao Wang & Wendong Wei & Jiashuo Li & Lei Shi, 2020. "Transforming the coal and steel nexus for China's eco‐civilization: Interplay between rail and energy infrastructure," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1352-1363, December.
    9. Loisel, Rodica & Lemiale, Lionel & Mima, Silvana & Bidaud, Adrien, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Energy Policy, Elsevier, vol. 169(C).
    10. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    11. Price, James & Keppo, Ilkka & Dodds, Paul E., 2023. "The role of new nuclear power in the UK's net-zero emissions energy system," Energy, Elsevier, vol. 262(PA).
    12. Yizhou Dai & Huan Li & Chuanhao Wang & Weiqing Xue & Menglu Zhang & Donghao Zhao & Jing Xue & Jiawei Li & Laihao Luo & Chunxiao Liu & Xu Li & Peixin Cui & Qiu Jiang & Tingting Zheng & Songqi Gu & Yao , 2023. "Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Liu, Laibao & Wang, Zheng & Wang, Yang & Wang, Jun & Chang, Rui & He, Gang & Tang, Wenjun & Gao, Ziqi & Li, Jiangtao & Liu, Changyi & Zhao, Lin & Qin, Dahe & Li, Shuangcheng, 2020. "Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    15. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    16. Anna Kluba & Robert Field, 2019. "Optimization and Exergy Analysis of Nuclear Heat Storage and Recovery," Energies, MDPI, vol. 12(21), pages 1-18, November.
    17. Bessette, Douglas L. & Arvai, Joseph L., 2018. "Engaging attribute tradeoffs in clean energy portfolio development," Energy Policy, Elsevier, vol. 115(C), pages 221-229.
    18. Sanghyun Hong & Barry W. Brook, 2018. "At the crossroads: An uncertain future facing the electricity‐generation sector in South Korea," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 5(3), pages 522-532, September.
    19. Wiser, Ryan & Millstein, Dev, 2020. "Evaluating the economic return to public wind energy research and development in the United States," Applied Energy, Elsevier, vol. 261(C).
    20. Vladimir Litvinenko, 2020. "The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas," Resources, MDPI, vol. 9(5), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.