IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v278y2020ics0306261920311946.html
   My bibliography  Save this article

Estimation of parameters affected in internal exhaust residual gases recirculation and the influence of exhaust residual gas on performance and emission of a spark ignition engine

Author

Listed:
  • Khoa, Nguyen Xuan
  • Quach Nhu, Y.
  • Lim, Ocktaeck

Abstract

In the effort of improving the internal combustion engine performance, the exhaust residual gases and effective release energy are sensitive factors, which effect on engine efficiency and emission formation. Herewith we estimated and summarized the parameters which affect the internal exhaust residual gases recirculation, and investigate the effect of internal exhaust residual gas on peak pressure rise, effective energy, and engine emissions, which weren’t presented yet in the previous articles. It is knotty to investigate the residual gas ratio, the effective energy under the various testing conditions from the experiments. Through the simulation and experiment methods approach we eliminated certain above drawbacks. From results of the research, we thoroughly investigated the effects of engine speed, air–fuel ratio, valve overlap, combustion duration, intake port diameter-bore ratio, and bore-stroke ratio on the internal exhaust residual gases recirculation. We also found that the increase in the internal exhaust residual gas from 1% to 5% was due to the peak firing temperature decrease from 2900 K to 1250 K, the peak pressure rise decrease from 8 to 5.5 bar/deg, the effective release energy decrease from 0.85 to 0.53 kJ, the NOx emission reduction from 11.3 to 2.12 g/kwh and the engine brake torque decrease from 20.3 to 9 Nm.

Suggested Citation

  • Khoa, Nguyen Xuan & Quach Nhu, Y. & Lim, Ocktaeck, 2020. "Estimation of parameters affected in internal exhaust residual gases recirculation and the influence of exhaust residual gas on performance and emission of a spark ignition engine," Applied Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311946
    DOI: 10.1016/j.apenergy.2020.115699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920311946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Mingzhang & Zheng, Zeyuan & Huang, Rong & Zhou, Xiaorong & Huang, Haozhong & Pan, Jiaying & Chen, Zhaohui, 2019. "Reduction in PM and NOX of a diesel engine integrated with n-octanol fuel addition and exhaust gas recirculation," Energy, Elsevier, vol. 187(C).
    2. Venu, Harish & Subramani, Lingesan & Raju, V. Dhana, 2019. "Emission reduction in a DI diesel engine using exhaust gas recirculation (EGR) of palm biodiesel blended with TiO2 nano additives," Renewable Energy, Elsevier, vol. 140(C), pages 245-263.
    3. Nguyen Xuan Khoa & Ocktaeck Lim, 2020. "Comparative Study of the Effective Release Energy, Residual Gas Fraction, and Emission Characteristics with Various Valve Port Diameter-Bore Ratios (VPD/B) of a Four-Stroke Spark Ignition Engine," Energies, MDPI, vol. 13(6), pages 1-18, March.
    4. Jung, Dongwon & Lee, Sejun, 2018. "An investigation on the potential of dedicated exhaust gas recirculation for improving thermal efficiency of stoichiometric and lean spark ignition engine operation," Applied Energy, Elsevier, vol. 228(C), pages 1754-1766.
    5. Lattimore, Thomas & Wang, Chongming & Xu, Hongming & Wyszynski, Miroslaw L. & Shuai, Shijin, 2016. "Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine," Applied Energy, Elsevier, vol. 161(C), pages 256-267.
    6. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Martins, Mario Eduardo Santos & Machado, Paulo Romeu Moreira & Pedrozo, Vinícius Bernardes & Zhao, Hua, 2019. "The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fuelled with wet ethanol," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Fontana, G. & Galloni, E., 2009. "Variable valve timing for fuel economy improvement in a small spark-ignition engine," Applied Energy, Elsevier, vol. 86(1), pages 96-105, January.
    8. Teo, A.E. & Chiong, M.S. & Yang, M. & Romagnoli, A. & Martinez-Botas, R.F. & Rajoo, S., 2019. "Performance evaluation of low-pressure turbine, turbo-compounding and air-Brayton cycle as engine waste heat recovery method," Energy, Elsevier, vol. 166(C), pages 895-907.
    9. Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
    10. Verschaeren, Roel & Schaepdryver, Wouter & Serruys, Thomas & Bastiaen, Marc & Vervaeke, Lieven & Verhelst, Sebastian, 2014. "Experimental study of NOx reduction on a medium speed heavy duty diesel engine by the application of EGR (exhaust gas recirculation) and Miller timing," Energy, Elsevier, vol. 76(C), pages 614-621.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Xiaojun & Sun, Nannan & Sun, Ting & Shen, Hongguang & Mehra, Roopesh Kumar & Liu, Junlong & Wang, Ying & Yang, Bo & Zeng, Ke, 2022. "Experimental investigation the effects of spark discharge characteristics on the heavy-duty spark ignition natural gas engine at low load condition," Energy, Elsevier, vol. 239(PC).
    2. Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.
    3. Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "A Study to Investigate the Effect of Valve Mechanisms on Exhaust Residual Gas and Effective Release Energy of a Motorcycle Engine," Energies, MDPI, vol. 14(17), pages 1-14, September.
    4. Le-Trong Hieu & Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "An Investigation on the Effects of Input Parameters on the Dynamic and Electric Consumption of Electric Motorcycles," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    5. Tuan Nghia Nguyen & Nguyen Xuan Khoa & Le Anh Tuan, 2021. "The Correlation of Biodiesel Blends with the Common Rail Diesel Engine’s Performance and Emission Characteristics," Energies, MDPI, vol. 14(11), pages 1-18, May.
    6. Cao, Jiale & Li, Tie & Huang, Shuai & Chen, Run & Li, Shiyan & Kuang, Min & Yang, Rundai & Huang, Yating, 2023. "Co-optimization of miller degree and geometric compression ratio of a large-bore natural gas generator engine with novel Knock models and machine learning," Applied Energy, Elsevier, vol. 352(C).
    7. Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "The Internal Residual Gas and Effective Release Energy of a Spark-Ignition Engine with Various Inlet Port–Bore Ratios and Full Load Condition," Energies, MDPI, vol. 14(13), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.
    2. Quach-Nhu Yhcmute & Nguyen-Xuan Khoa & Ocktaeck Lim, 2021. "A Study on the Effect of Ignition Timing on Residual Gas, Effective Release Energy, and Engine Emissions of a V-Twin Engine," Energies, MDPI, vol. 14(15), pages 1-18, July.
    3. De Bellis, Vincenzo, 2016. "Performance optimization of a spark-ignition turbocharged VVA engine under knock limited operation," Applied Energy, Elsevier, vol. 164(C), pages 162-174.
    4. Feng, Hongqing & Suo, Xinghan & Xiao, Shuwen & Chen, Xiaofan & Zhang, Zhisong & Gao, Ning & Zheng, Zunqing, 2023. "Numerical simulation on the effects of n-butanol combined with intake dilution on engine knock," Energy, Elsevier, vol. 271(C).
    5. Shu, Jun & Fu, Jianqin & Ren, Chengqin & Liu, Jingping & Wang, Shuqian & Feng, Sha, 2020. "Numerical investigation on flow and heat transfer processes of novel methanol cracking device for internal combustion engine exhaust heat recovery," Energy, Elsevier, vol. 195(C).
    6. Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "The Internal Residual Gas and Effective Release Energy of a Spark-Ignition Engine with Various Inlet Port–Bore Ratios and Full Load Condition," Energies, MDPI, vol. 14(13), pages 1-13, June.
    7. Nguyen Xuan Khoa & Ocktaeck Lim, 2020. "Comparative Study of the Effective Release Energy, Residual Gas Fraction, and Emission Characteristics with Various Valve Port Diameter-Bore Ratios (VPD/B) of a Four-Stroke Spark Ignition Engine," Energies, MDPI, vol. 13(6), pages 1-18, March.
    8. Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "A Study to Investigate the Effect of Valve Mechanisms on Exhaust Residual Gas and Effective Release Energy of a Motorcycle Engine," Energies, MDPI, vol. 14(17), pages 1-14, September.
    9. Jaliliantabar, Farzad & Ghobadian, Barat & Najafi, Gholamhassan & Mamat, Rizalman & Carlucci, Antonio Paolo, 2019. "Multi-objective NSGA-II optimization of a compression ignition engine parameters using biodiesel fuel and exhaust gas recirculation," Energy, Elsevier, vol. 187(C).
    10. Curto-Risso, P.L. & Medina, A. & Calvo Hernández, A. & Guzmán-Vargas, L. & Angulo-Brown, F., 2011. "On cycle-to-cycle heat release variations in a simulated spark ignition heat engine," Applied Energy, Elsevier, vol. 88(5), pages 1557-1567, May.
    11. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    13. Gainey, Brian & Gohn, James & Hariharan, Deivanayagam & Rahimi-Boldaji, Mozhgan & Lawler, Benjamin, 2020. "Assessing the impact of injector included angle and piston geometry on thermally stratified compression ignition with wet ethanol," Applied Energy, Elsevier, vol. 262(C).
    14. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    15. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2018. "Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control," Energy, Elsevier, vol. 161(C), pages 649-662.
    16. Gavaskar, T. & Ramanan M, Venkata & Arun, K. & Arivazhagan, S., 2023. "The combined effect of green synthesized nitrogen-doped carbon quantum dots blended jackfruit seed biodiesel and acetylene gas tested on the dual fuel engine," Energy, Elsevier, vol. 275(C).
    17. Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
    18. Shen, Kai & Xu, Zishun & Chen, Hong & Zhang, Zhendong, 2021. "Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine," Energy, Elsevier, vol. 215(PB).
    19. Moonchan Kim & Jungmo Oh & Changhee Lee, 2018. "Study on Combustion and Emission Characteristics of Marine Diesel Oil and Water-In-Oil Emulsified Marine Diesel Oil," Energies, MDPI, vol. 11(7), pages 1-16, July.
    20. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.