IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v277y2020ics0306261920311028.html
   My bibliography  Save this article

Waste heat to power conversion by means of thermomagnetic hydrodynamic energy harvester

Author

Listed:
  • Chiolerio, Alessandro
  • Garofalo, Erik
  • Mattiussi, Fabio
  • Crepaldi, Marco
  • Fortunato, Giuseppe
  • Iovieno, Michele

Abstract

Energy harvesting from extremely low enthalpy sources can play an important role in increasing the sustainability of future energy applications: low temperature differences are common and offer an abundant source, available both in the natural environment and as the result of a many industrial process. This paper presents the first closed-loop thermomagnetic hydrodynamic energy harvester, based on thermomagnetic advection and exploiting a commercial ferrofluid. The lab-scale prototype has a toroidal geometry adopted from the well-known tokamak inertial machines. Peltier modules are used to control the thermal gradient that is harvested and converted directly to electric energy, while permanent magnets trigger the advection. Temperature sensors are installed along the toroidal walls (thermistors) and are placed in contact with the rotating fluid (thermocouples). To extract and ensure the electrical energy output, the structure is wrapped-up with induction coils. Two coil configurations (purely poloidal and mixed poloidal/toroidal windings) are tested, in a heterogeneous two-phase flow from the combination of water carrier and ferrofluid packets, reaching a maximum extracted electrical power per unit of temperature difference of 10.4 μW/K. This positions the device close to 20% of the ideal Carnot efficiency of a thermal machine working on the same temperature drop. Numerical analysis of the system has been performed developing a Fortran™ code in a Eulerian framework, using a mixed Fourier-Galerkin/finite difference spatial discretization. The harvester is suitable for producing electricity from running engines, appliances, warm gas exhausts, exothermic processes.

Suggested Citation

  • Chiolerio, Alessandro & Garofalo, Erik & Mattiussi, Fabio & Crepaldi, Marco & Fortunato, Giuseppe & Iovieno, Michele, 2020. "Waste heat to power conversion by means of thermomagnetic hydrodynamic energy harvester," Applied Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311028
    DOI: 10.1016/j.apenergy.2020.115591
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920311028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Chuang & Yan, Xiao-jiang & Wang, Shun-sen & Bai, Kun-lun & Di, Juan & Cheng, Shang-fang & Li, Jun, 2016. "System optimisation and performance analysis of CO2 transcritical power cycle for waste heat recovery," Energy, Elsevier, vol. 100(C), pages 391-400.
    2. Zeb, K. & Ali, S.M. & Khan, B. & Mehmood, C.A. & Tareen, N. & Din, W. & Farid, U. & Haider, A., 2017. "A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1142-1155.
    3. Anja Waske & Daniel Dzekan & Kai Sellschopp & Dietmar Berger & Alexander Stork & Kornelius Nielsch & Sebastian Fähler, 2019. "Energy harvesting near room temperature using a thermomagnetic generator with a pretzel-like magnetic flux topology," Nature Energy, Nature, vol. 4(1), pages 68-74, January.
    4. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & Mota-Babiloni, Adrián, 2015. "Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry," Energy, Elsevier, vol. 85(C), pages 534-542.
    5. Anthony P. Straub & Ngai Yin Yip & Shihong Lin & Jongho Lee & Menachem Elimelech, 2016. "Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes," Nature Energy, Nature, vol. 1(7), pages 1-6, July.
    6. Bo Liu & Deepak Rajagopal, 2019. "Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States," Nature Energy, Nature, vol. 4(8), pages 700-708, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Alnujaim & A. Bouhemadou & M. Chegaar & A. Guechi & S. Bin-Omran & R. Khenata & Y. Al-Douri & W. Yang & H. Lu, 2022. "Density functional theory screening of some fundamental physical properties of Cs2InSbCl6 and Cs2InBiCl6 double perovskites," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(7), pages 1-16, July.
    2. Zeeshan, & Panigrahi, Basanta Kumar & Ahmed, Rahate & Mehmood, Muhammad Uzair & Park, Jin Chul & Kim, Yeongmin & Chun, Wongee, 2021. "Operation of a low-temperature differential heat engine for power generation via hybrid nanogenerators," Applied Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    3. Iftikhar Ahmad & Muhammad Salman Arif & Izzat Iqbal Cheema & Patrik Thollander & Masroor Ahmed Khan, 2020. "Drivers and Barriers for Efficient Energy Management Practices in Energy-Intensive Industries: A Case-Study of Iron and Steel Sector," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    4. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    5. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    6. Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.
    7. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).
    8. Byun, Jaewon & Han, Jeehoon, 2021. "Economically feasible production of green methane from vegetable and fruit-rich food waste," Energy, Elsevier, vol. 235(C).
    9. Wang, Xue & Wang, Hongchao & Su, Wenbing & Chen, Tingting & Tan, Chang & Madre, María A. & Sotelo, Andres & Wang, Chunlei, 2022. "U-type unileg thermoelectric module: A novel structure for high-temperature application with long lifespan," Energy, Elsevier, vol. 238(PB).
    10. Ivan Korolija & Richard Greenough, 2016. "Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery," Energies, MDPI, vol. 9(5), pages 1-20, May.
    11. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    12. Rasheed, Rizwan & Tahir, Fizza & Yasar, Abdullah & Sharif, Faiza & Tabinda, Amtul Bari & Ahmad, Sajid Rashid & Wang, Yubo & Su, Yuehong, 2022. "Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system," Renewable Energy, Elsevier, vol. 185(C), pages 1261-1271.
    13. Kazuaki Yazawa & Ali Shakouri, 2021. "Heat Flux Based Optimization of Combined Heat and Power Thermoelectric Heat Exchanger," Energies, MDPI, vol. 14(22), pages 1-16, November.
    14. Peng, Valerie & Slocum, Alexander, 2020. "Endemic Water and Storm Trash to energy via in-situ processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Hegazy Rezk & Ziad Mohammed Ali & Omer Abdalla & Obai Younis & Mohamed Ramadan Gomaa & Mauia Hashim, 2019. "Hybrid Moth-Flame Optimization Algorithm and Incremental Conductance for Tracking Maximum Power of Solar PV/Thermoelectric System under Different Conditions," Mathematics, MDPI, vol. 7(10), pages 1-21, September.
    16. Yıldız Koç, 2019. "Parametric Optimisation of an ORC in a Wood Chipboard Production Facility to Recover Waste Heat Produced from the Drying and Steam Production Process," Energies, MDPI, vol. 12(19), pages 1-22, September.
    17. Li, Zhi & Wang, Lei & Jiang, Ruicheng & Wang, Bingzheng & Yu, Xiaonan & Huang, Rui & Yu, Xiaoli, 2022. "Experimental investigations on dynamic performance of organic Rankine cycle integrated with latent thermal energy storage under transient engine conditions," Energy, Elsevier, vol. 246(C).
    18. Kun-Hsien Lu & Hsiao-Wei D. Chiang & Pei-Jen Wang, 2022. "Sensitivity Analysis of Transcritical CO 2 Cycle Performance Regarding Isentropic Efficiencies of Turbomachinery for Low Temperature Heat Sources," Energies, MDPI, vol. 15(23), pages 1-18, November.
    19. Xu, Haowei & Zhang, Qiang & Yi, Longbing & Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Hu, Haoyang & Sun, Peng & Tan, Xiaojian & Liu, Guo-qiang & Song, Kun & Jiang, Jun, 2022. "High performance of Bi2Te3-based thermoelectric generator owing to pressure in fabrication process," Applied Energy, Elsevier, vol. 326(C).
    20. Han, Jeehoon & Byun, Jaewon & Kwon, Oseok & Lee, Jechan, 2022. "Climate variability and food waste treatment: Analysis for bioenergy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.