IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920310047.html
   My bibliography  Save this article

In situ characterization of the biological performance of a Francis turbine retrofitted with a modular guide vane

Author

Listed:
  • Martinez, Jayson J.
  • Deng, Zhiqun Daniel
  • Mueller, Robert
  • Titzler, Scott

Abstract

There are two strategies to lower overall project costs to an extent that will make many potential sustainable hydropower sites economically viable: (1) design standardized/modular components; (2) use advanced tools to reduce environmental evaluation costs. In this study an autonomous sensor device (Sensor Fish) was used to study a Francis turbine retrofitted with a modular guide vane. The median nadir pressures measured were 74.7, 66.6, and 56.6 kPaA for 90-, 190-, and 380-kW operating conditions respectively. These nadir pressures were compared to other Francis turbines studied using Sensor Fish and were found to be within the same range. The proportion of Sensor Fish releases with severe acceleration events (acceleration ≥ 95G) was also investigated. The proportion ranged from 73 to 80% (runner region), 50 to 64% (guide vane region), and 9 to 28% (draft tube region), which was within the range of the other turbines used for comparison. The Sensor Fish testing that was conducted at Hurley Dam demonstrates that the modular guide vane that was retrofitted to the existing Francis turbine is potentially a suitable replacement that can provide biological performance similar to the guide vane used with other existing Francis turbines, but with the benefit of reduced fabrication costs.

Suggested Citation

  • Martinez, Jayson J. & Deng, Zhiqun Daniel & Mueller, Robert & Titzler, Scott, 2020. "In situ characterization of the biological performance of a Francis turbine retrofitted with a modular guide vane," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920310047
    DOI: 10.1016/j.apenergy.2020.115492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920310047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Tao & Deng, Zhiqun Daniel & Duncan, Joanne P. & Zhou, Daqing & Carlson, Thomas J. & Johnson, Gary E. & Hou, Hongfei, 2016. "Assessing hydraulic conditions through Francis turbines using an autonomous sensor device," Renewable Energy, Elsevier, vol. 99(C), pages 1244-1252.
    2. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.
    3. Vincenzo Sammartano & Costanza Aricò & Armando Carravetta & Oreste Fecarotta & Tullio Tucciarelli, 2013. "Banki-Michell Optimal Design by Computational Fluid Dynamics Testing and Hydrodynamic Analysis," Energies, MDPI, vol. 6(5), pages 1-24, April.
    4. Williamson, S.J. & Stark, B.H. & Booker, J.D., 2013. "Performance of a low-head pico-hydro Turgo turbine," Applied Energy, Elsevier, vol. 102(C), pages 1114-1126.
    5. Lisicki, Michal & Lubitz, William & Taylor, Graham W., 2016. "Optimal design and operation of Archimedes screw turbines using Bayesian optimization," Applied Energy, Elsevier, vol. 183(C), pages 1404-1417.
    6. Židonis, Audrius & Aggidis, George A., 2015. "State of the art in numerical modelling of Pelton turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 135-144.
    7. Chen, Jinbo & Engeda, Abraham, 2020. "Standard module hydraulic technology: A novel geometrical design methodology and analysis for a low-head hydraulic turbine system, Part I: General design methodology and basic geometry considerations," Energy, Elsevier, vol. 196(C).
    8. Deng, Zhiqun & Carlson, Thomas J. & Ploskey, Gene R. & Richmond, Marshall C. & Dauble, Dennis D., 2007. "Evaluation of blade-strike models for estimating the biological performance of Kaplan turbines," Ecological Modelling, Elsevier, vol. 208(2), pages 165-176.
    9. Hongfei Hou & Zhiqun Daniel Deng & Jayson J. Martinez & Tao Fu & Joanne P. Duncan & Gary E. Johnson & Jun Lu & John R. Skalski & Richard L. Townsend & Li Tan, 2018. "A Hydropower Biological Evaluation Toolset (HBET) for Characterizing Hydraulic Conditions and Impacts of Hydro-Structures on Fish," Energies, MDPI, vol. 11(4), pages 1-13, April.
    10. Choi, Hyen-Jun & Zullah, Mohammed Asid & Roh, Hyoung-Woon & Ha, Pil-Su & Oh, Sueg-Young & Lee, Young-Ho, 2013. "CFD validation of performance improvement of a 500 kW Francis turbine," Renewable Energy, Elsevier, vol. 54(C), pages 111-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klopries, Elena-Maria & Schüttrumpf, Holger, 2020. "Mortality assessment for adult European eels (Anguilla Anguilla) during turbine passage using CFD modelling," Renewable Energy, Elsevier, vol. 147(P1), pages 1481-1490.
    2. Linda Vikström & Kjell Leonardsson & Johan Leander & Samuel Shry & Olle Calles & Gustav Hellström, 2020. "Validation of Francis–Kaplan Turbine Blade Strike Models for Adult and Juvenile Atlantic Salmon (Salmo Salar, L.) and Anadromous Brown Trout (Salmo Trutta, L.) Passing High Head Turbines," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    3. Bao, Bin & Chen, Wen & Wang, Quan, 2019. "A piezoelectric hydro-energy harvester featuring a special container structure," Energy, Elsevier, vol. 189(C).
    4. Židonis, Audrius & Benzon, David S. & Aggidis, George A., 2015. "Development of hydro impulse turbines and new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1624-1635.
    5. Phoevos (Foivos) Koukouvinis & John Anagnostopoulos, 2023. "State of the Art in Designing Fish-Friendly Turbines: Concepts and Performance Indicators," Energies, MDPI, vol. 16(6), pages 1-25, March.
    6. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    7. Martinez, J.J. & Deng, Z.D. & Titzler, P.S. & Duncan, J.P. & Lu, J. & Mueller, R.P. & Tian, C. & Trumbo, B.A. & Ahmann, M.L. & Renholds, J.F., 2019. "Hydraulic and biological characterization of a large Kaplan turbine," Renewable Energy, Elsevier, vol. 131(C), pages 240-249.
    8. Powell, D. & Ebrahimi, A. & Nourbakhsh, S. & Meshkahaldini, M. & Bilton, A.M., 2018. "Design of pico-hydro turbine generator systems for self-powered electrochemical water disinfection devices," Renewable Energy, Elsevier, vol. 123(C), pages 590-602.
    9. Chitrakar, Sailesh & Solemslie, Bjørn Winther & Neopane, Hari Prasad & Dahlhaug, Ole Gunnar, 2020. "Review on numerical techniques applied in impulse hydro turbines," Renewable Energy, Elsevier, vol. 159(C), pages 843-859.
    10. Chen, Jinbo & Engeda, Abraham, 2021. "Standard module hydraulic technology: A novel geometrical design methodology and analysis for a low-head hydraulic turbine system, part II: Turbine stator-blade and runner-blade geometry, and off-desi," Energy, Elsevier, vol. 214(C).
    11. Suyesh, Bhattarai & Parag, Vichare & Keshav, Dahal & Ahmed, Al Makky & Abdul-Ghani, Olabi, 2019. "Novel trends in modelling techniques of Pelton Turbine bucket for increased renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 87-101.
    12. Zhou, Daqing & Gui, Jia & Deng, Zhiqun Daniel & Chen, Huixiang & Yu, Yunyun & Yu, An & Yang, Chunxia, 2019. "Development of an ultra-low head siphon hydro turbine using computational fluid dynamics," Energy, Elsevier, vol. 181(C), pages 43-50.
    13. Shamsuddeen, Mohamed Murshid & Ma, Sang-Bum & Park, No-Hyun & Kim, Kyung Min & Kim, Jin-Hyuk, 2023. "Design analysis and optimization of a hydraulic gate turbine for power production from ultra-low head sites," Energy, Elsevier, vol. 275(C).
    14. Du, Jiyun & Shen, Zhicheng & Yang, Hongxing, 2018. "Effects of different block designs on the performance of inline cross-flow turbines in urban water mains," Applied Energy, Elsevier, vol. 228(C), pages 97-107.
    15. Joe Butchers & Shaun Benzon & Sam Williamson & Julian Booker & George Aggidis, 2021. "A Rationalised CFD Design Methodology for Turgo Turbines to Enable Local Manufacture in the Global South," Energies, MDPI, vol. 14(19), pages 1-23, October.
    16. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    17. Elgammi, Moutaz & Hamad, Abduljawad Ashour, 2022. "A feasibility study of operating a low static pressure head micro pelton turbine based on water hammer phenomenon," Renewable Energy, Elsevier, vol. 195(C), pages 1-16.
    18. Ram Adhikari & David Wood, 2018. "The Design of High Efficiency Crossflow Hydro Turbines: A Review and Extension," Energies, MDPI, vol. 11(2), pages 1-18, January.
    19. Zhu, Guojun & Guo, Yuxing & Feng, Jianjun & Gao, Luhan & Wu, Guangkuan & Luo, Xingqi, 2022. "Analysis and reduction of the pressure and shear damage probability of fish in a Francis turbine," Renewable Energy, Elsevier, vol. 199(C), pages 462-473.
    20. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920310047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.