IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920309727.html
   My bibliography  Save this article

Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells

Author

Listed:
  • Wang, Xuechao
  • Chen, Jinzhou
  • Quan, Shengwei
  • Wang, Ya-Xiong
  • He, Hongwen

Abstract

Fuel cells are a promising solution for increasing driving range of electric vehicles. To guarantee the high efficiency and stable operation of fuel cells, the effective regulation of oxygen and hydrogen reactants is needed. During varied driving conditions, in which the drastic current demand changes may result in insufficient reactant, the fuel cell can even be damaged. In this paper, a hierarchical model predictive control (HMPC) strategy is proposed based on the deep learning for vehicle speed predictions. Speed variation predictions are considered by the MPC to regulate the air supply system and preventing oxygen starvation in the fuel cell stack. The problems of fuel cell oxygen stoichiometry control are, first, stated with the preliminary energy management description as well as with the limitations of the traditional MPC. The deep learning Back Propagation (BP) neural network was then designed as the first-level predictor to forecast the vehicle speed by training with integrated driving cycles, and predict the fuel cell current based on its cathode flow model. Subsequently, the second-level MPC used the current disturbance prediction and filling is introduced to regulate the oxygen mass flow. The simulation results for the MANHATTAN drive cycle demonstrated that the root mean square error (RMSE) for speed predictions was less than 1 km/h. Compared with the conventional MPC, HMPC offers better robustness in the face of influence from current changes induced by speed-variations, and the RMSE of the oxygen stoichiometry control was decreased by 63.37%.

Suggested Citation

  • Wang, Xuechao & Chen, Jinzhou & Quan, Shengwei & Wang, Ya-Xiong & He, Hongwen, 2020. "Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309727
    DOI: 10.1016/j.apenergy.2020.115460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920309727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    2. Han, Jaeyoung & Yu, Sangseok & Yi, Sun, 2017. "Adaptive control for robust air flow management in an automotive fuel cell system," Applied Energy, Elsevier, vol. 190(C), pages 73-83.
    3. Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
    4. Matraji, Imad & Laghrouche, Salah & Jemei, Samir & Wack, Maxime, 2013. "Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode," Applied Energy, Elsevier, vol. 104(C), pages 945-957.
    5. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2017. "Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions," Applied Energy, Elsevier, vol. 206(C), pages 751-764.
    6. Kim, Bosung & Cha, Dowon & Kim, Yongchan, 2015. "The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions," Applied Energy, Elsevier, vol. 138(C), pages 143-149.
    7. Mahmoud S. AbouOmar & Hua-Jun Zhang & Yi-Xin Su, 2019. "Fractional Order Fuzzy PID Control of Automotive PEM Fuel Cell Air Feed System Using Neural Network Optimization Algorithm," Energies, MDPI, vol. 12(8), pages 1-23, April.
    8. Sun, Li & Shen, Jiong & Hua, Qingsong & Lee, Kwang Y., 2018. "Data-driven oxygen excess ratio control for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 231(C), pages 866-875.
    9. Chen, Huicui & Zhao, Xin & Qu, Bingwang & Zhang, Tong & Pei, Pucheng & Li, Congxin, 2018. "An evaluation method of gas distribution quality in dynamic process of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 232(C), pages 26-35.
    10. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
    11. Chen, Huicui & Liu, Biao & Zhang, Tong & Pei, Pucheng, 2019. "Influencing sensitivities of critical operating parameters on PEMFC output performance and gas distribution quality under different electrical load conditions," Applied Energy, Elsevier, vol. 255(C).
    12. Li, Shuai & Ma, Hongjie & Li, Weiyi, 2017. "Typical solar radiation year construction using k-means clustering and discrete-time Markov chain," Applied Energy, Elsevier, vol. 205(C), pages 720-731.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    2. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    3. Sylvain Rigal & Amine Jaafar & Christophe Turpin & Théophile Hordé & Jean-Baptiste Jollys & Paul Kreczanik, 2024. "Steady-State Voltage Modelling of a HT-PEMFC under Various Operating Conditions," Energies, MDPI, vol. 17(3), pages 1-18, January.
    4. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    6. Zhang, Zhendong & Wang, Ya-Xiong & He, Hongwen & Sun, Fengchun, 2021. "A short- and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 304(C).
    7. Yuguo Xu & Enyong Xu & Weiguang Zheng & Qibai Huang, 2023. "Hierarchical Model-Predictive-Control-Based Energy Management Strategy for Fuel Cell Hybrid Commercial Vehicles Incorporating Traffic Information," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    8. Mohammad AlElaiwi & Mugahed A. Al-antari & Hafiz Farooq Ahmad & Areeba Azhar & Badar Almarri & Jamil Hussain, 2022. "VPP: Visual Pollution Prediction Framework Based on a Deep Active Learning Approach Using Public Road Images," Mathematics, MDPI, vol. 11(1), pages 1-26, December.
    9. Min, Dehao & Song, Zhen & Chen, Huicui & Wang, Tianxiang & Zhang, Tong, 2022. "Genetic algorithm optimized neural network based fuel cell hybrid electric vehicle energy management strategy under start-stop condition," Applied Energy, Elsevier, vol. 306(PB).
    10. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    2. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    3. Abel Rubio & Wilton Agila & Leandro González & Jonathan Aviles-Cedeno, 2023. "Distributed Intelligence in Autonomous PEM Fuel Cell Control," Energies, MDPI, vol. 16(12), pages 1-25, June.
    4. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    5. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Zeng, Tao & Xiao, Long & Chen, Jinrui & Li, Yu & Yang, Yi & Huang, Shulong & Deng, Chenghao & Zhang, Caizhi, 2023. "Feedforward-based decoupling control of air supply for vehicular fuel cell system: Methodology and experimental validation," Applied Energy, Elsevier, vol. 335(C).
    7. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Sun, Li & Shen, Jiong & Hua, Qingsong & Lee, Kwang Y., 2018. "Data-driven oxygen excess ratio control for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 231(C), pages 866-875.
    9. Zhang, Xiaojie & Zhang, Tong & Chen, Huicui & Cao, Yinliang, 2021. "A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 286(C).
    10. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    11. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    12. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    13. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    14. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    15. Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
    16. Chen, Huicui & Zhang, Ruirui & Xia, Zhifeng & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Experimental investigation on PEM fuel cell flooding mitigation under heavy loading condition," Applied Energy, Elsevier, vol. 349(C).
    17. Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Tolj, Ivan & Penga, Željko & Vukičević, Damir & Barbir, Frano, 2020. "Thermal management of edge-cooled 1 kW portable proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 257(C).
    19. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    20. Gojmir Radica & Ivan Tolj & Mykhaylo V. Lototskyy & Sivakumar Pasupathi, 2023. "Air Mass Flow and Pressure Optimization of a PEM Fuel Cell Hybrid System for a Forklift Application," Energies, MDPI, vol. 17(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.