A numerical modeling study on the influence of porosity changes during thermochemical heat storage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.114152
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
- Shao, H. & Nagel, T. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2013. "Non-equilibrium thermo-chemical heat storage in porous media: Part 2 – A 1D computational model for a calcium hydroxide reaction system," Energy, Elsevier, vol. 60(C), pages 271-282.
- Michel, Benoit & Mazet, Nathalie & Mauran, Sylvain & Stitou, Driss & Xu, Jing, 2012. "Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed," Energy, Elsevier, vol. 47(1), pages 553-563.
- Nagel, T. & Shao, H. & Singh, A.K. & Watanabe, N. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2013. "Non-equilibrium thermochemical heat storage in porous media: Part 1 – Conceptual model," Energy, Elsevier, vol. 60(C), pages 254-270.
- Nagel, T. & Shao, H. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2014. "The influence of gas–solid reaction kinetics in models of thermochemical heat storage under monotonic and cyclic loading," Applied Energy, Elsevier, vol. 136(C), pages 289-302.
- Schmidt, Matthias & Gutierrez, Andrea & Linder, Marc, 2017. "Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor," Applied Energy, Elsevier, vol. 188(C), pages 672-681.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiao, Sinan & Praditia, Timothy & Oladyshkin, Sergey & Nowak, Wolfgang, 2021. "Global sensitivity analysis of a CaO/Ca(OH)2 thermochemical energy storage model for parametric effect analysis," Applied Energy, Elsevier, vol. 285(C).
- Prill, Torben & Latz, Arnulf & Jahnke, Thomas, 2025. "Modeling of powder bed dynamics in thermochemical heat storage," Applied Energy, Elsevier, vol. 383(C).
- Jun Yan & Lei Jiang & Changying Zhao, 2023. "Numerical Simulation of the Ca(OH) 2 /CaO Thermochemical Heat Storage Process in an Internal Heating Fixed-Bed Reactor," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
- Wang, Yuhao & Wang, Ruilin & Guo, Yafei & Yang, Qingshan & Ying, Jiaheng & Liu, Yuanyuan & Sun, Jian & Li, Wenjia & Zhao, Chuanwen, 2024. "The optimization of the MgO/MgCO3 decarbonation process and machine learning-based improved reactor design approach," Energy, Elsevier, vol. 305(C).
- Jakub T. Hołaj-Krzak & Barbara Dybek & Jan Szymenderski & Adam Koniuszy & Grzegorz Wałowski, 2025. "Unconventional Fossil Energy Carrier Assessment of the Influence of the Gas Permeability Coefficient on the Structure of Porous Materials: A Review," Energies, MDPI, vol. 18(4), pages 1-33, February.
- Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
- Prill, Torben & Latz, Arnulf & Jahnke, Thomas, 2025. "Modeling of powder bed dynamics in thermochemical heat storage," Applied Energy, Elsevier, vol. 383(C).
- Risthaus, Kai & Bürger, Inga & Linder, Marc & Schmidt, Matthias, 2020. "Numerical analysis of the hydration of calcium oxide in a fixed bed reactor based on lab-scale experiments," Applied Energy, Elsevier, vol. 261(C).
- Lehmann, Christoph & Beckert, Steffen & Nonnen, Thomas & Gläser, Roger & Kolditz, Olaf & Nagel, Thomas, 2017. "Water loading lift and heat storage density prediction of adsorption heat storage systems using Dubinin-Polanyi theory—Comparison with experimental results," Applied Energy, Elsevier, vol. 207(C), pages 274-282.
- Wang, Wenqing & Kolditz, Olaf & Nagel, Thomas, 2017. "Parallel finite element modelling of multi-physical processes in thermochemical energy storage devices," Applied Energy, Elsevier, vol. 185(P2), pages 1954-1964.
- Lehmann, Christoph & Beckert, Steffen & Gläser, Roger & Kolditz, Olaf & Nagel, Thomas, 2017. "Assessment of adsorbate density models for numerical simulations of zeolite-based heat storage applications," Applied Energy, Elsevier, vol. 185(P2), pages 1965-1970.
- Wang, Yuhao & Wang, Ruilin & Guo, Yafei & Yang, Qingshan & Ying, Jiaheng & Liu, Yuanyuan & Sun, Jian & Li, Wenjia & Zhao, Chuanwen, 2024. "The optimization of the MgO/MgCO3 decarbonation process and machine learning-based improved reactor design approach," Energy, Elsevier, vol. 305(C).
- Nagel, T. & Shao, H. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2014. "The influence of gas–solid reaction kinetics in models of thermochemical heat storage under monotonic and cyclic loading," Applied Energy, Elsevier, vol. 136(C), pages 289-302.
- Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
- Yan, J. & Zhao, C.Y. & Pan, Z.H., 2017. "The effect of CO2 on Ca(OH)2 and Mg(OH)2 thermochemical heat storage systems," Energy, Elsevier, vol. 124(C), pages 114-123.
- Xiao, Sinan & Praditia, Timothy & Oladyshkin, Sergey & Nowak, Wolfgang, 2021. "Global sensitivity analysis of a CaO/Ca(OH)2 thermochemical energy storage model for parametric effect analysis," Applied Energy, Elsevier, vol. 285(C).
- Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
- Pahlevaninezhad, Masoud & Davazdah Emami, Mohsen & Panjepour, Masoud, 2014. "The effects of kinetic parameters on combustion characteristics in a sintering bed," Energy, Elsevier, vol. 73(C), pages 160-176.
- Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
- Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
- Chate, Akshay & Srinivasa Murthy, S. & Dutta, Pradip, 2024. "Analysis of a coupled calcium oxide-potassium carbonate salt hydrate based thermochemical energy storage system," Energy, Elsevier, vol. 313(C).
- Hadidi, N. & Bennacer, R. & Ould-amer, Y., 2015. "Two-dimensional thermosolutal natural convective heat and mass transfer in a bi-layered and inclined porous enclosure," Energy, Elsevier, vol. 93(P2), pages 2582-2592.
- Schmidt, Matthias & Linder, Marc, 2017. "Power generation based on the Ca(OH)2/ CaO thermochemical storage system – Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design," Applied Energy, Elsevier, vol. 203(C), pages 594-607.
- Xu, H.J. & Han, X.C. & Hua, W.S. & Friedrich, D. & Santori, G. & Bevan, E. & Vafai, K. & Wang, F.Q. & Zhang, X.L. & Yu, G.J. & Xu, H.F., 2025. "Progress on thermal storage technologies with high heat density in renewables and low carbon applications: Latent and thermochemical energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
- Pan, Zhihao & Zhao, C.Y., 2015. "Dehydration/hydration of MgO/H2O chemical thermal storage system," Energy, Elsevier, vol. 82(C), pages 611-618.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318392. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.