IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp1163-1174.html
   My bibliography  Save this article

Thermal integration of membrane distillation in an anaerobic digestion biogas plant – A techno-economic assessment

Author

Listed:
  • Khan, Ershad Ullah
  • Nordberg, Åke

Abstract

Digestate reject water from biogas production is often recirculated for dilution of source-separated organic waste to yield a suitable feedstock for the digestion process. The total solids (TS) content of the recycled reject water has a large impact on the potential added amount of organic substrate, and thus on the efforts to maximize the capacity of the plant without exceeding the capacity of the pumps. This study assessed the potential to improve the overall efficiency of a full-scale co-digestion plant using thermally integrated membrane distillation (MD) and the possibility of recovering waste heat from the substrate sanitization process for use in the MD system. The results showed that reducing the TS content of recirculated reject water by MD could increase the loading, thus increasing biogas production by 45–50%, and that thermal integration with MD improved the overall energy efficiency of the integrated system. The thermal energy demand for the MD process was supplied by the low-temperature waste heat from the sanitization process (21%) and additional heat from a district heating (DH) network (79%). On using waste energy recovery, the energy demand to heat the reject water for MD was lower than the energy in the additional biogas production. Specific thermal energy demand for the MD system tested ranged from 800 to 1050 kWh/m3 without coolant-side heat recovery, but was only 116 kWh/m3 when heat recovery was possible. The concentration of nutrients from highly diluted reject water (>90% water content) reduced the storage requirement and transportation costs of the bio-fertilizer. The economic assessment indicated that thermal integration of a biogas plant with MD could be economically feasible. However, the lifetime of the MD modules and the impact of fouling need further study.

Suggested Citation

  • Khan, Ershad Ullah & Nordberg, Åke, 2019. "Thermal integration of membrane distillation in an anaerobic digestion biogas plant – A techno-economic assessment," Applied Energy, Elsevier, vol. 239(C), pages 1163-1174.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1163-1174
    DOI: 10.1016/j.apenergy.2019.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919303137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thorin, Eva & Lindmark, Johan & Nordlander, Eva & Odlare, Monica & Dahlquist, Erik & Kastensson, Jan & Leksell, Niklas & Pettersson, Carl-Magnus, 2012. "Performance optimization of the Växtkraft biogas production plant," Applied Energy, Elsevier, vol. 97(C), pages 503-508.
    2. Wang, Xiaoqiang & Nordlander, Eva & Thorin, Eva & Yan, Jinyue, 2013. "Microalgal biomethane production integrated with an existing biogas plant: A case study in Sweden," Applied Energy, Elsevier, vol. 112(C), pages 478-484.
    3. Mikkel Bojesen & Luc Boerboom & Hans Skov-Petersen, 2014. "Towards a sustainable capacity expansion of the Danish biogas sector," IFRO Working Paper 2014/03, University of Copenhagen, Department of Food and Resource Economics.
    4. Khan, Ershad Ullah & Martin, Andrew R., 2016. "Review of biogas digester technology in rural Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 247-259.
    5. Khan, Ershad Ullah & Martin, Andrew R., 2015. "Optimization of hybrid renewable energy polygeneration system with membrane distillation for rural households in Bangladesh," Energy, Elsevier, vol. 93(P1), pages 1116-1127.
    6. Zupančič, G.D. & Roš, M., 2003. "Heat and energy requirements in thermophilic anaerobic sludge digestion," Renewable Energy, Elsevier, vol. 28(14), pages 2255-2267.
    7. Uday Kumar, N.T. & Mohan, Gowtham & Martin, Andrew, 2016. "Performance analysis of solar cogeneration system with different integration strategies for potable water and domestic hot water production," Applied Energy, Elsevier, vol. 170(C), pages 466-475.
    8. Grim, Johanna & Malmros, Peter & Schnürer, Anna & Nordberg, Åke, 2015. "Comparison of pasteurization and integrated thermophilic sanitation at a full-scale biogas plant – Heat demand and biogas production," Energy, Elsevier, vol. 79(C), pages 419-427.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Battisti, Rodrigo & Galeazzi, Andrea & Prifti, Kristiano & Manenti, Flavio & Machado, Ricardo Antonio Francisco & Marangoni, Cintia, 2021. "Techno-economic and energetic assessment of an innovative pilot-scale thermosyphon-assisted falling film distillation unit for sanitizer-grade ethanol recovery," Applied Energy, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ershad Ullah Khan & Åke Nordberg & Peter Malmros, 2022. "Waste Heat Driven Integrated Membrane Distillation for Concentrating Nutrients and Process Water Recovery at a Thermophilic Biogas Plant," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
    2. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    3. Nutakki Tirumala Uday Kumar & Andrew R. Martin, 2017. "Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE," Energies, MDPI, vol. 10(4), pages 1-22, April.
    4. Chen, Jingjing & Hai, Zhong & Lu, Xiaohua & Wang, Changsong & Ji, Xiaoyan, 2020. "Heat-transfer enhancement for corn straw slurry from biogas plants by twisted hexagonal tubes," Applied Energy, Elsevier, vol. 262(C).
    5. Mendez, Lara & Mahdy, Ahmed & Ballesteros, Mercedes & González-Fernández, Cristina, 2014. "Methane production of thermally pretreated Chlorella vulgaris and Scenedesmus sp. biomass at increasing biomass loads," Applied Energy, Elsevier, vol. 129(C), pages 238-242.
    6. Omar, M.N. & Samak, A.A. & Keshek, M.H. & Elsisi, S.F., 2020. "Simulation and validation model for using the energy produced from broiler litter waste in their house and its requirement of energy," Renewable Energy, Elsevier, vol. 159(C), pages 920-928.
    7. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    8. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2019. "The role of life cycle assessment in the sustainable transition to a decarbonised gas network through green gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 16-28.
    9. Xiaojun Liu & Thomas Lendormi & Jean-Louis Lanoisellé, 2021. "Conventional and Innovative Hygienization of Feedstock for Biogas Production: Resistance of Indicator Bacteria to Thermal Pasteurization, Pulsed Electric Field Treatment, and Anaerobic Digestion," Energies, MDPI, vol. 14(7), pages 1-20, March.
    10. Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Ahmadi, Samareh & Powell, Kody M., 2023. "Dynamic simulation of a triple-mode multi-generation system assisted by heat recovery and solar energy storage modules: Techno-economic optimization using machine learning approaches," Applied Energy, Elsevier, vol. 348(C).
    11. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    12. Ahmad, Munir & Wu, Yiyun, 2022. "Household-based factors affecting uptake of biogas plants in Bangladesh: Implications for sustainable development," Renewable Energy, Elsevier, vol. 194(C), pages 858-867.
    13. Woldemariam, Daniel & Kullab, Alaa & Khan, Ershad Ullah & Martin, Andrew, 2018. "Recovery of ethanol from scrubber-water by district heat-driven membrane distillation: Industrial-scale technoeconomic study," Renewable Energy, Elsevier, vol. 128(PB), pages 484-494.
    14. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    15. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).
    16. Praveen Kumar, G. & Ayou, Dereje S. & Narendran, C. & Saravanan, R. & Maiya, M.P. & Coronas, Alberto, 2023. "Renewable heat powered polygeneration system based on an advanced absorption cycle for rural communities," Energy, Elsevier, vol. 262(PA).
    17. Acheampong, Michael & Ertem, Funda Cansu & Kappler, Benjamin & Neubauer, Peter, 2017. "In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 927-937.
    18. Ariunbaatar, Javkhlan & Panico, Antonio & Esposito, Giovanni & Pirozzi, Francesco & Lens, Piet N.L., 2014. "Pretreatment methods to enhance anaerobic digestion of organic solid waste," Applied Energy, Elsevier, vol. 123(C), pages 143-156.
    19. Mohammed S. M. Al-Azzawi & Daphne Gondhalekar & Jörg E. Drewes, 2022. "Neighborhood-Scale Urban Water Reclamation with Integrated Resource Recovery for Establishing Nexus City in Munich, Germany: Pipe Dream or Reality?," Resources, MDPI, vol. 11(7), pages 1-17, July.
    20. Ji, Ling & Liang, Xiaolin & Xie, Yulei & Huang, Guohe & Wang, Bing, 2021. "Optimal design and sensitivity analysis of the stand-alone hybrid energy system with PV and biomass-CHP for remote villages," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1163-1174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.