IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp793-803.html
   My bibliography  Save this article

Design of header and coil steam generators for concentrating solar power applications accounting for low-cycle fatigue requirements

Author

Listed:
  • Ferruzza, Davide
  • Kærn, Martin Ryhl
  • Haglind, Fredrik

Abstract

Concentrating solar power plants are experiencing an increasing share in the renewable energy generation market. Among them, parabolic trough plants are the most commercially mature technology. These plants still experience many challenges, one of which is the cyclic daily start-up and shut-down procedures. These pose new challenges to industrially mature components like the steam generator system, as frequent load changes might decrease their lifetime considerably due to cyclic thermo-mechanical stress loads. In this context, the header and coil design is a promising configuration to minimize the stresses.

Suggested Citation

  • Ferruzza, Davide & Kærn, Martin Ryhl & Haglind, Fredrik, 2019. "Design of header and coil steam generators for concentrating solar power applications accounting for low-cycle fatigue requirements," Applied Energy, Elsevier, vol. 236(C), pages 793-803.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:793-803
    DOI: 10.1016/j.apenergy.2018.12.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918318488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.12.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-Gómez, P.A. & Gómez-Hernández, J. & Briongos, J.V. & Santana, D., 2018. "Transient thermo-mechanical analysis of steam generators for solar tower plants," Applied Energy, Elsevier, vol. 212(C), pages 1051-1068.
    2. Mercati, Stefano & Milani, Massimo & Montorsi, Luca & Paltrinieri, Fabrizio, 2012. "Design of the steam generator in an energy conversion system based on the aluminum combustion with water," Applied Energy, Elsevier, vol. 97(C), pages 686-694.
    3. Lin, Meng & Reinhold, Jan & Monnerie, Nathalie & Haussener, Sophia, 2018. "Modeling and design guidelines for direct steam generation solar receivers," Applied Energy, Elsevier, vol. 216(C), pages 761-776.
    4. Mertens, Nicolas & Alobaid, Falah & Starkloff, Ralf & Epple, Bernd & Kim, Hyun-Gee, 2015. "Comparative investigation of drum-type and once-through heat recovery steam generator during start-up," Applied Energy, Elsevier, vol. 144(C), pages 250-260.
    5. Franco, Alessandro & Giannini, Nicola, 2006. "A general method for the optimum design of heat recovery steam generators," Energy, Elsevier, vol. 31(15), pages 3342-3361.
    6. González-Gómez, P.A. & Petrakopoulou, F. & Briongos, J.V. & Santana, D., 2017. "Cost-based design optimization of the heat exchangers in a parabolic trough power plant," Energy, Elsevier, vol. 123(C), pages 314-325.
    7. Vignarooban, K. & Xu, Xinhai & Arvay, A. & Hsu, K. & Kannan, A.M., 2015. "Heat transfer fluids for concentrating solar power systems – A review," Applied Energy, Elsevier, vol. 146(C), pages 383-396.
    8. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    9. González-Gómez, P.A. & Gómez-Hernández, J. & Briongos, J.V. & Santana, D., 2018. "Fatigue analysis of the steam generator of a parabolic trough solar power plant," Energy, Elsevier, vol. 155(C), pages 565-577.
    10. Gómez-Hernández, J. & González-Gómez, P.A. & Briongos, J.V. & Santana, D., 2018. "Influence of the steam generator on the exergetic and exergoeconomic analysis of solar tower plants," Energy, Elsevier, vol. 145(C), pages 313-328.
    11. Taler, Jan & Węglowski, Bohdan & Taler, Dawid & Sobota, Tomasz & Dzierwa, Piotr & Trojan, Marcin & Madejski, Paweł & Pilarczyk, Marcin, 2015. "Determination of start-up curves for a boiler with natural circulation based on the analysis of stress distribution in critical pressure components," Energy, Elsevier, vol. 92(P1), pages 153-159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González-Gómez, P.A. & Gómez-Hernández, J. & Ruiz, C. & Santana, D., 2022. "Can solar tower plants withstand the operational flexibility of combined cycle plants?," Applied Energy, Elsevier, vol. 314(C).
    2. Marcin Pilarczyk & Bohdan Węglowski & Lars O. Nord, 2019. "A Comprehensive Thermal and Structural Transient Analysis of a Boiler’s Steam Outlet Header by Means of a Dedicated Algorithm and FEM Simulation," Energies, MDPI, vol. 13(1), pages 1-12, December.
    3. Laporte-Azcué, M. & Rodríguez-Sánchez, M.R., 2024. "Thermal efficiency and endurance enhancement of tubular solar receivers using functionally graded materials," Applied Energy, Elsevier, vol. 360(C).
    4. González-Gómez, P.A. & Laporte-Azcué, M. & Fernández-Torrijos, M. & Santana, D., 2022. "Design optimization and structural assessment of a header and coil steam generator for load-following solar tower plants," Renewable Energy, Elsevier, vol. 192(C), pages 456-471.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferruzza, Davide & Kærn, Martin Ryhl & Haglind, Fredrik, 2020. "A method to account for transient performance requirements in the design of steam generators for concentrated solar power applications," Applied Energy, Elsevier, vol. 269(C).
    2. Li, Xiaolei & Xu, Ershu & Ma, Linrui & Song, Shuang & Xu, Li, 2019. "Modeling and dynamic simulation of a steam generation system for a parabolic trough solar power plant," Renewable Energy, Elsevier, vol. 132(C), pages 998-1017.
    3. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    4. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    5. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    6. Romero-Anton, N. & Martin-Escudero, K. & Portillo-Valdés, L.A. & Gómez-Elvira, I. & Salazar-Herran, E., 2018. "Improvement of auxiliary BI-DRUM boiler operation by dynamic simulation," Energy, Elsevier, vol. 148(C), pages 676-686.
    7. Angerer, Michael & Kahlert, Steffen & Spliethoff, Hartmut, 2017. "Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage," Energy, Elsevier, vol. 130(C), pages 246-257.
    8. Martínez-Merino, Paloma & Alcántara, Rodrigo & Gómez-Larrán, Pedro & Carrillo-Berdugo, Iván & Navas, Javier, 2022. "MoS2-based nanofluids as heat transfer fluid in parabolic trough collector technology," Renewable Energy, Elsevier, vol. 188(C), pages 721-730.
    9. Chanfreut, Paula & Maestre, José M. & Gallego, Antonio J. & Annaswamy, Anuradha M. & Camacho, Eduardo F., 2023. "Clustering-based model predictive control of solar parabolic trough plants," Renewable Energy, Elsevier, vol. 216(C).
    10. Starke, Allan R. & Cardemil, José M. & Bonini, Vinicius R.B. & Escobar, Rodrigo & Castro-Quijada, Matías & Videla, Álvaro, 2024. "Assessing the performance of novel molten salt mixtures on CSP applications," Applied Energy, Elsevier, vol. 359(C).
    11. Tiwari, Vivek & Rai, Aakash C. & Srinivasan, P., 2021. "Parametric analysis and optimization of a latent heat thermal energy storage system for concentrated solar power plants under realistic operating conditions," Renewable Energy, Elsevier, vol. 174(C), pages 305-319.
    12. Hübel, Moritz & Meinke, Sebastian & Andrén, Marcus T. & Wedding, Christoffer & Nocke, Jürgen & Gierow, Conrad & Hassel, Egon & Funkquist, Jonas, 2017. "Modelling and simulation of a coal-fired power plant for start-up optimisation," Applied Energy, Elsevier, vol. 208(C), pages 319-331.
    13. Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Performance evaluation and analyses of novel parabolic trough evacuated collector tubes with spectrum-selective glass envelope," Renewable Energy, Elsevier, vol. 138(C), pages 793-804.
    14. Wang, Anming & Liu, Jiping & Zhang, Shunqi & Liu, Ming & Yan, Junjie, 2020. "Steam generation system operation optimization in parabolic trough concentrating solar power plants under cloudy conditions," Applied Energy, Elsevier, vol. 265(C).
    15. Miguel Ángel Reyes-Belmonte, 2020. "A Bibliometric Study on Integrated Solar Combined Cycles (ISCC), Trends and Future Based on Data Analytics Tools," Sustainability, MDPI, vol. 12(19), pages 1-29, October.
    16. Soares, João & Oliveira, Armando C. & Valenzuela, Loreto, 2021. "A dynamic model for once-through direct steam generation in linear focus solar collectors," Renewable Energy, Elsevier, vol. 163(C), pages 246-261.
    17. González-Gómez, P.A. & Laporte-Azcué, M. & Fernández-Torrijos, M. & Santana, D., 2022. "Design optimization and structural assessment of a header and coil steam generator for load-following solar tower plants," Renewable Energy, Elsevier, vol. 192(C), pages 456-471.
    18. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Perez-Maqueda, L.A. & Giménez, P., 2019. "The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. José M. Cardemil & Allan R. Starke & Adriana Zurita & Carlos Mata‐Torres & Rodrigo Escobar, 2021. "Integration schemes for hybrid and polygeneration concentrated solar power plants," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
    20. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2021. "Optimisation of heating and cooling of pressure thick-walled components operating in the saturated steam area," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:793-803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.