IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v235y2019icp963-977.html
   My bibliography  Save this article

Numerical analysis of a new piezoelectric-based energy harvesting pavement system: Lessons from laboratory-based and field-based simulations

Author

Listed:
  • Guo, Lukai
  • Lu, Qing

Abstract

This study focuses on numerical investigation and optimization of one piezoelectric-based energy harvesting pavement system (PZ-EHPS), which consists of a piezoelectric layer sandwiched between two conductive asphalt layers. Novel piezoelectric element designs inside the piezoelectric layer, such as piezo ball and piezo roof, were proposed to explore the energy harvesting potential of the system. Considering the large scale of the system, finite element models were built not only to analyze the performance of PZ-EHPS specimens fabricated in the laboratory, but also to simulate the PZ-EHPS operation under real traffic conditions. Results from the laboratory-based finite element models, which were verified by experimental study, determined that a thin piezoelectric layer with piezo ball elements and a low stiffness insulative filler had the significant advantage of producing up to 85 V electricity. Compared to piezo ball elements, piezo cylinder elements may fit a thick and stiff piezoelectric layer better and lead to a high voltage output up to 50 V. As a result of the field-based finite element models, the PZ-EHPS with a rigid piezoelectric layer produces more electricity than that with a flexible piezoelectric layer. For a single-vehicle scenario, if each PZ-EHPS segment length equals the vehicle wheelbase length, consecutive PZ-EHPS segments may constantly supply high electricity as the vehicle moves at a high speed over the segments. For a multiple-vehicle scenario, however, the voltage output generated by a second vehicle will be reduced if the first vehicle is still on the same PZ-EHPS segment. This study provides optimal design features of the PZ-EHPS to lead this energy harvesting system significantly closer to the field application.

Suggested Citation

  • Guo, Lukai & Lu, Qing, 2019. "Numerical analysis of a new piezoelectric-based energy harvesting pavement system: Lessons from laboratory-based and field-based simulations," Applied Energy, Elsevier, vol. 235(C), pages 963-977.
  • Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:963-977
    DOI: 10.1016/j.apenergy.2018.11.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918317446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.11.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shin, Youn-Hwan & Jung, Inki & Noh, Myoung-Sub & Kim, Jeong Hun & Choi, Ji-Young & Kim, Sangtae & Kang, Chong-Yun, 2018. "Piezoelectric polymer-based roadway energy harvesting via displacement amplification module," Applied Energy, Elsevier, vol. 216(C), pages 741-750.
    2. Jung, Inki & Shin, Youn-Hwan & Kim, Sangtae & Choi, Ji-young & Kang, Chong-Yun, 2017. "Flexible piezoelectric polymer-based energy harvesting system for roadway applications," Applied Energy, Elsevier, vol. 197(C), pages 222-229.
    3. Jasim, Abbas & Yesner, Greg & Wang, Hao & Safari, Ahmad & Maher, Ali & Basily, B., 2018. "Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications," Applied Energy, Elsevier, vol. 224(C), pages 438-447.
    4. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators," Applied Energy, Elsevier, vol. 88(4), pages 1291-1297, April.
    5. Wadhawan, Siddharth R. & Pearce, Joshua M., 2017. "Power and energy potential of mass-scale photovoltaic noise barrier deployment: A case study for the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 125-132.
    6. Roshani, Hossein & Dessouky, Samer & Montoya, Arturo & Papagiannakis, A.T., 2016. "Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study," Applied Energy, Elsevier, vol. 182(C), pages 210-218.
    7. Wang, Chaohui & Zhao, Jianxiong & Li, Qiang & Li, Yanwei, 2018. "Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement," Applied Energy, Elsevier, vol. 229(C), pages 18-30.
    8. Guo, Lukai & Lu, Qing, 2017. "Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 761-773.
    9. Jasim, Abbas & Wang, Hao & Yesner, Greg & Safari, Ahmad & Maher, Ali, 2017. "Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway," Energy, Elsevier, vol. 141(C), pages 1133-1145.
    10. Wang, Yuan & Zhu, Xin & Zhang, Tingsheng & Bano, Shehar & Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yuan, Yanping, 2018. "A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film," Applied Energy, Elsevier, vol. 230(C), pages 52-61.
    11. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    12. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    13. Jiang, Wei & Yuan, Dongdong & Xu, Shudong & Hu, Huitao & Xiao, Jingjing & Sha, Aimin & Huang, Yue, 2017. "Energy harvesting from asphalt pavement using thermoelectric technology," Applied Energy, Elsevier, vol. 205(C), pages 941-950.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    2. Ebrahimian, Fariba & Kabirian, Zohre & Younesian, Davood & Eghbali, Pezhman, 2021. "Auxetic clamped-clamped resonators for high-efficiency vibration energy harvesting at low-frequency excitation," Applied Energy, Elsevier, vol. 295(C).
    3. Khazaee, Majid & Huber, John E. & Rosendahl, Lasse & Rezania, Alireza, 2021. "The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements," Applied Energy, Elsevier, vol. 285(C).
    4. Gholikhani, Mohammadreza & Nasouri, Reza & Tahami, Seyed Amid & Legette, Sarah & Dessouky, Samer & Montoya, Arturo, 2019. "Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump," Applied Energy, Elsevier, vol. 250(C), pages 503-511.
    5. Wang, Shuai & Wang, Chaohui & Gao, Zhiwei & Cao, Hongyun, 2020. "Design and performance of a cantilever piezoelectric power generation device for real-time road safety warnings," Applied Energy, Elsevier, vol. 276(C).
    6. Chen, Cheng & Sharafi, Amir & Sun, Jian-Qiao, 2020. "A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation," Applied Energy, Elsevier, vol. 269(C).
    7. Niloufar Zabihi & Mohamed Saafi, 2020. "Recent Developments in the Energy Harvesting Systems from Road Infrastructures," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    8. Song, Gyeong Ju & Cho, Jae Yong & Kim, Kyung-Bum & Ahn, Jung Hwan & Song, Yewon & Hwang, Wonseop & Hong, Seong Do & Sung, Tae Hyun, 2019. "Development of a pavement block piezoelectric energy harvester for self-powered walkway applications," Applied Energy, Elsevier, vol. 256(C).
    9. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    10. Yangyang Zhang & Qi Lai & Ji Wang & Chaofeng Lü, 2022. "Piezoelectric Energy Harvesting from Roadways under Open-Traffic Conditions: Analysis and Optimization with Scaling Law Method," Energies, MDPI, vol. 15(9), pages 1-12, May.
    11. Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
    12. Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Song, Zhi, 2021. "Effect evaluation of road piezoelectric micro-energy collection-storage system based on laboratory and on-site tests," Applied Energy, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    2. Pei, Jianzhong & Zhou, Bochao & Lyu, Lei, 2019. "e-Road: The largest energy supply of the future?," Applied Energy, Elsevier, vol. 241(C), pages 174-183.
    3. Song, Gyeong Ju & Cho, Jae Yong & Kim, Kyung-Bum & Ahn, Jung Hwan & Song, Yewon & Hwang, Wonseop & Hong, Seong Do & Sung, Tae Hyun, 2019. "Development of a pavement block piezoelectric energy harvester for self-powered walkway applications," Applied Energy, Elsevier, vol. 256(C).
    4. Chen, Cheng & Sharafi, Amir & Sun, Jian-Qiao, 2020. "A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation," Applied Energy, Elsevier, vol. 269(C).
    5. Cao, Yangsen & Sha, Aimin & Liu, Zhuangzhuang & Luan, Bo & Li, Jiarong & Jiang, Wei, 2020. "Electric energy output model of a piezoelectric transducer for pavement application under vehicle load excitation," Energy, Elsevier, vol. 211(C).
    6. Wang, Jun & Liu, Zhiming & Ding, Guangya & Fu, Hongtao & Cai, Guojun, 2021. "Watt-level road-compatible piezoelectric energy harvester for LED-induced lamp system," Energy, Elsevier, vol. 229(C).
    7. Yangyang Zhang & Qi Lai & Ji Wang & Chaofeng Lü, 2022. "Piezoelectric Energy Harvesting from Roadways under Open-Traffic Conditions: Analysis and Optimization with Scaling Law Method," Energies, MDPI, vol. 15(9), pages 1-12, May.
    8. Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Jasim, Abbas & Yesner, Greg & Wang, Hao & Safari, Ahmad & Maher, Ali & Basily, B., 2018. "Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications," Applied Energy, Elsevier, vol. 224(C), pages 438-447.
    10. Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
    11. Guo, Lukai & Wang, Hao, 2023. "Multi-physics modeling of piezoelectric energy harvesters from vibrations for improved cantilever designs," Energy, Elsevier, vol. 263(PC).
    12. Song, Gyeong Ju & Kim, Kyung-Bum & Cho, Jae Yong & Woo, Min Sik & Ahn, Jung Hwan & Eom, Jong Hyuk & Ko, Sung Min & Yang, Chan Ho & Hong, Seong Do & Jeong, Se Yeong & Hwang, Won Seop & Woo, Sang Bum & , 2019. "Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system," Applied Energy, Elsevier, vol. 247(C), pages 221-227.
    13. Lubinda F. Walubita & Abu N. M. Faruk & Jerome Helffrich & Samer Dessouky & Luckson Kamisa & Hossein Roshani & Arturo Montoya, 2022. "The Quest for Renewable Energy—Effects of Different Asphalt Mixes and Laboratory Loading on Piezoelectric Energy Harvesters," Energies, MDPI, vol. 16(1), pages 1-18, December.
    14. Gholikhani, Mohammadreza & Nasouri, Reza & Tahami, Seyed Amid & Legette, Sarah & Dessouky, Samer & Montoya, Arturo, 2019. "Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump," Applied Energy, Elsevier, vol. 250(C), pages 503-511.
    15. Diogo Correia & Adelino Ferreira, 2021. "Energy Harvesting on Airport Pavements: State-of-the-Art," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    16. Bruno C. Mota & Bruno Albuquerque Neto & Suelly H. A. Barroso & Francisco T. S. Aragão & Adelino J. L. Ferreira & Jorge B. Soares & Lélio A. T. Brito, 2022. "Characterization of Piezoelectric Energy Production from Asphalt Pavements Using a Numerical-Experimental Framework," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    17. Hu, Hengwu & Vizzari, Domenico & Zha, Xudong & Roberts, Ronald, 2021. "Solar pavements: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Ebrahim Hamid Hussein Al-Qadami & Zahiraniza Mustaffa & Mohamed E. Al-Atroush, 2022. "Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy," Energies, MDPI, vol. 15(3), pages 1-26, February.
    19. Niloufar Zabihi & Mohamed Saafi, 2020. "Recent Developments in the Energy Harvesting Systems from Road Infrastructures," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    20. Tahami, Seyed Amid & Gholikhani, Mohammadreza & Nasouri, Reza & Dessouky, Samer & Papagiannakis, A.T., 2019. "Developing a new thermoelectric approach for energy harvesting from asphalt pavements," Applied Energy, Elsevier, vol. 238(C), pages 786-795.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:235:y:2019:i:c:p:963-977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.