IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v219y2018icp299-311.html
   My bibliography  Save this article

Operation performance enhancement of single-double-effect absorption chiller

Author

Listed:
  • Lubis, Arnas
  • Jeong, Jongsoo
  • Giannetti, Niccolo
  • Yamaguchi, Seiichi
  • Saito, Kiyoshi
  • Yabase, Hajime
  • Alhamid, Muhammad I.
  • Nasruddin,

Abstract

Absorption chillers constitute a valuable option for utilising solar energy. Specifically, when installed in tropical regions, this technology ideally matches the needs for refrigeration and air-conditioning because of the abundance of solar energy throughout the year. A single-double-effect absorption chiller combines the single and double-effect configurations to compensate for the unpredictable instantaneous availability of solar radiation and cooling load fluctuations. The operative performance of this system is strongly affected by internal parameters such as the absorber outlet solution flow rate and the solution distribution ratio, which connect the operability of the single and double-effect configurations. Therefore, these important parameters are currently used to maximise system performance while assuring its stability. This study discusses how the COP of a single-double-effect absorption chiller, for solar cooling applications in tropical areas, can be maximised (1.55 at full load, and up to 2.42 at 60% partial load) by manipulating those internal parameters. The simulation results were compared with the experimental data (field test data) and, by adopting the appropriate control method, showed an improvement of the system performance between 12 and 60% when compared to a corresponding double-effect configuration.

Suggested Citation

  • Lubis, Arnas & Jeong, Jongsoo & Giannetti, Niccolo & Yamaguchi, Seiichi & Saito, Kiyoshi & Yabase, Hajime & Alhamid, Muhammad I. & Nasruddin,, 2018. "Operation performance enhancement of single-double-effect absorption chiller," Applied Energy, Elsevier, vol. 219(C), pages 299-311.
  • Handle: RePEc:eee:appene:v:219:y:2018:i:c:p:299-311
    DOI: 10.1016/j.apenergy.2018.03.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918303751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drosou, Vassiliki & Kosmopoulos, Panos & Papadopoulos, Agis, 2016. "Solar cooling system using concentrating collectors for office buildings: A case study for Greece," Renewable Energy, Elsevier, vol. 97(C), pages 697-708.
    2. Hartmann, N. & Glueck, C. & Schmidt, F.P., 2011. "Solar cooling for small office buildings: Comparison of solar thermal and photovoltaic options for two different European climates," Renewable Energy, Elsevier, vol. 36(5), pages 1329-1338.
    3. García Casals, Xavier, 2006. "Solar absorption cooling in Spain: Perspectives and outcomes from the simulation of recent installations," Renewable Energy, Elsevier, vol. 31(9), pages 1371-1389.
    4. Praene, Jean Philippe & Marc, Olivier & Lucas, Franck & Miranville, Frédéric, 2011. "Simulation and experimental investigation of solar absorption cooling system in Reunion Island," Applied Energy, Elsevier, vol. 88(3), pages 831-839, March.
    5. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2013. "A hybrid solar and chemical looping combustion system for solar thermal energy storage," Applied Energy, Elsevier, vol. 103(C), pages 671-678.
    6. Lubis, Arnas & Jeong, Jongsoo & Saito, Kiyoshi & Giannetti, Niccolo & Yabase, Hajime & Idrus Alhamid, Muhammad & Nasruddin,, 2016. "Solar-assisted single-double-effect absorption chiller for use in Asian tropical climates," Renewable Energy, Elsevier, vol. 99(C), pages 825-835.
    7. Mateus, Tiago & Oliveira, Armando C., 2009. "Energy and economic analysis of an integrated solar absorption cooling and heating system in different building types and climates," Applied Energy, Elsevier, vol. 86(6), pages 949-957, June.
    8. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
    9. Eicker, Ursula & Pietruschka, Dirk & Haag, Maximilian & Schmitt, Andreas, 2015. "Systematic design and analysis of solar thermal cooling systems in different climates," Renewable Energy, Elsevier, vol. 80(C), pages 827-836.
    10. Ahmed, Tofael & Mekhilef, Saad & Shah, Rakibuzzaman & Mithulananthan, N. & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "ASEAN power grid: A secure transmission infrastructure for clean and sustainable energy for South-East Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1420-1435.
    11. Labus, J. & Hernández, J.A. & Bruno, J.C. & Coronas, A., 2012. "Inverse neural network based control strategy for absorption chillers," Renewable Energy, Elsevier, vol. 39(1), pages 471-482.
    12. Choudhury, Biplab & Saha, Bidyut Baran & Chatterjee, Pradip K. & Sarkar, Jyoti Prakas, 2013. "An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling," Applied Energy, Elsevier, vol. 104(C), pages 554-567.
    13. Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
    14. Fong, K.F. & Lee, C.K. & Chow, T.T., 2012. "Comparative study of solar cooling systems with building-integrated solar collectors for use in sub-tropical regions like Hong Kong," Applied Energy, Elsevier, vol. 90(1), pages 189-195.
    15. Bakhtyar, B. & Sopian, K. & Sulaiman, M.Y. & Ahmad, S.A., 2013. "Renewable energy in five South East Asian countries: Review on electricity consumption and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 506-514.
    16. Alahmer, Ali & Wang, Xiaolin & Al-Rbaihat, Raed & Amanul Alam, K.C. & Saha, B.B., 2016. "Performance evaluation of a solar adsorption chiller under different climatic conditions," Applied Energy, Elsevier, vol. 175(C), pages 293-304.
    17. Izquierdo, M. & González-Gil, A. & Palacios, E., 2014. "Solar-powered single-and double-effect directly air-cooled LiBr–H2O absorption prototype built as a single unit," Applied Energy, Elsevier, vol. 130(C), pages 7-19.
    18. Nienborg, Björn & Dalibard, Antoine & Schnabel, Lena & Eicker, Ursula, 2017. "Approaches for the optimized control of solar thermally driven cooling systems," Applied Energy, Elsevier, vol. 185(P1), pages 732-744.
    19. Pongtornkulpanich, A. & Thepa, S. & Amornkitbamrung, M. & Butcher, C., 2008. "Experience with fully operational solar-driven 10-ton LiBr/H2O single-effect absorption cooling system in Thailand," Renewable Energy, Elsevier, vol. 33(5), pages 943-949.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siddique, Muhammad Zeeshan & Badar, Abdul Waheed & Siddiqui, M. Salman & Butt, Fahad Sarfraz & Saleem, Muhammad & Mahmood, Khalid & Fazal, Imran, 2022. "Performance analysis of double effect solar absorption cooling system with different schemes of hot/cold auxiliary integration and parallel-serial arrangement of solar field," Energy, Elsevier, vol. 245(C).
    2. Qasem, Naef A.A. & Zubair, Syed M. & Abdallah, Ayman M. & Elbassoussi, Muhammad H. & Ahmed, Mohamed A., 2020. "Novel and efficient integration of a humidification-dehumidification desalination system with an absorption refrigeration system," Applied Energy, Elsevier, vol. 263(C).
    3. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    4. Wang, Fu & Zhao, Jun & Zhang, Houcheng & Miao, He & Zhao, Jiapei & Wang, Jiatang & Yuan, Jinliang & Yan, Jinyue, 2018. "Efficiency evaluation of a coal-fired power plant integrated with chilled ammonia process using an absorption refrigerator," Applied Energy, Elsevier, vol. 230(C), pages 267-276.
    5. Ding, Xingqi & Zhou, Yufei & Duan, Liqiang & Li, Da & Zheng, Nan, 2023. "Comprehensive performance investigation of a novel solar-assisted liquid air energy storage system with different operating modes in different seasons," Energy, Elsevier, vol. 284(C).
    6. Wang, Yijun & Jin, Xinqiao & Shi, Wantao & Wang, Jiangqing, 2019. "Online chiller loading strategy based on the near-optimal performance map for energy conservation," Applied Energy, Elsevier, vol. 238(C), pages 1444-1451.
    7. Li, Xian & Lin, Alexander & Young, Chin-Huai & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building," Applied Energy, Elsevier, vol. 254(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    2. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    3. Hirmiz, R. & Lightstone, M.F. & Cotton, J.S., 2018. "Performance enhancement of solar absorption cooling systems using thermal energy storage with phase change materials," Applied Energy, Elsevier, vol. 223(C), pages 11-29.
    4. Chen, Guansheng & Liu, Chongchong & Li, Nanshuo & Li, Feng, 2017. "A study on heat absorbing and vapor generating characteristics of H2O/LiBr mixture in an evacuated tube," Applied Energy, Elsevier, vol. 185(P1), pages 294-299.
    5. Palomba, Valeria & Vasta, Salvatore & Freni, Angelo & Pan, Quanwen & Wang, Ruzhu & Zhai, Xiaoqiang, 2017. "Increasing the share of renewables through adsorption solar cooling: A validated case study," Renewable Energy, Elsevier, vol. 110(C), pages 126-140.
    6. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    7. Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
    8. Ali, Dilawer & Ratismith, Wattana, 2021. "A semicircular trough solar collector for air-conditioning system using a single effect NH3–H2O absorption chiller," Energy, Elsevier, vol. 215(PA).
    9. Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
    10. Pintaldi, Sergio & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2017. "Energetic evaluation of thermal energy storage options for high efficiency solar cooling systems," Applied Energy, Elsevier, vol. 188(C), pages 160-177.
    11. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
    12. Chugh, Devesh & Gluesenkamp, Kyle & Abdelaziz, Omar & Moghaddam, Saeed, 2017. "Ionic liquid-based hybrid absorption cycle for water heating, dehumidification, and cooling," Applied Energy, Elsevier, vol. 202(C), pages 746-754.
    13. Buonomano, A. & Calise, F. & Palombo, A., 2013. "Solar heating and cooling systems by CPVT and ET solar collectors: A novel transient simulation model," Applied Energy, Elsevier, vol. 103(C), pages 588-606.
    14. Reda, Francesco & Paiho, Satu & Pasonen, Riku & Helm, Martin & Menhart, Florian & Schex, Richard & Laitinen, Ari, 2020. "Comparison of solar assisted heat pump solutions for office building applications in Northern climate," Renewable Energy, Elsevier, vol. 147(P1), pages 1392-1417.
    15. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    16. Chidambaram, L.A. & Ramana, A.S. & Kamaraj, G. & Velraj, R., 2011. "Review of solar cooling methods and thermal storage options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3220-3228, August.
    17. Zhai, X.Q. & Qu, M. & Li, Yue. & Wang, R.Z., 2011. "A review for research and new design options of solar absorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4416-4423.
    18. Zhai, X.Q. & Wang, R.Z., 2010. "Experimental investigation and performance analysis on a solar adsorption cooling system with/without heat storage," Applied Energy, Elsevier, vol. 87(3), pages 824-835, March.
    19. Amiri Rad, Ehsan & Davoodi, Vajihe, 2021. "Thermo-economic evaluation of a hybrid solar-gas driven and air-cooled absorption chiller integrated with hot water production by a transient modeling," Renewable Energy, Elsevier, vol. 163(C), pages 1253-1264.
    20. Yunlong Ma & Suvash C. Saha & Wendy Miller & Lisa Guan, 2017. "Comparison of Different Solar-Assisted Air Conditioning Systems for Australian Office Buildings," Energies, MDPI, vol. 10(10), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:219:y:2018:i:c:p:299-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.