IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v216y2018icp620-633.html
   My bibliography  Save this article

Experimental and numerical analysis of a SOFC-CHP system with adsorption and hybrid chillers for telecommunication applications

Author

Listed:
  • Palomba, Valeria
  • Ferraro, Marco
  • Frazzica, Andrea
  • Vasta, Salvatore
  • Sergi, Francesco
  • Antonucci, Vincenzo

Abstract

This paper reports about the combined experimental and numerical investigation of a novel small size multi-generation system, for electric (i.e. <10 kW) and cooling (i.e. <20 kW) energy provision to Base Transceiver Stations and small data centers. The proposed concept is based on a high-efficiency natural gas driven SOFC-CHP coupled to commercially available thermally driven adsorption chillers. The main components of the system were experimentally characterized under relevant boundaries and the obtained performance maps were used to implement a TRNSYS model of the whole multi-generation system. The developed model was used to investigate the effect of the sizing of each component as well as the integration of two different commercial thermally driven chillers on the achievable global efficiency. This analysis demonstrated the possibility of getting global energy efficiency up to 0.63 and yearly primary energy savings up to 110 MWh. CO2 emissions avoided are up to 43 t/y.

Suggested Citation

  • Palomba, Valeria & Ferraro, Marco & Frazzica, Andrea & Vasta, Salvatore & Sergi, Francesco & Antonucci, Vincenzo, 2018. "Experimental and numerical analysis of a SOFC-CHP system with adsorption and hybrid chillers for telecommunication applications," Applied Energy, Elsevier, vol. 216(C), pages 620-633.
  • Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:620-633
    DOI: 10.1016/j.apenergy.2018.02.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    2. Tippawan, Phanicha & Arpornwichanop, Amornchai & Dincer, Ibrahim, 2015. "Energy and exergy analyses of an ethanol-fueled solid oxide fuel cell for a trigeneration system," Energy, Elsevier, vol. 87(C), pages 228-239.
    3. Ferrari, Mario L. & Traverso, Alberto & Massardo, Aristide F., 2016. "Smart polygeneration grids: experimental performance curves of different prime movers," Applied Energy, Elsevier, vol. 162(C), pages 622-630.
    4. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    5. Fong, K.F. & Lee, C.K., 2014. "Investigation on zero grid-electricity design strategies of solid oxide fuel cell trigeneration system for high-rise building in hot and humid climate," Applied Energy, Elsevier, vol. 114(C), pages 426-433.
    6. Gu, Wei & Lu, Shuai & Wu, Zhi & Zhang, Xuesong & Zhou, Jinhui & Zhao, Bo & Wang, Jun, 2017. "Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch," Applied Energy, Elsevier, vol. 205(C), pages 173-186.
    7. Cho, Jinkyun & Kim, Yundeok, 2016. "Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center," Applied Energy, Elsevier, vol. 165(C), pages 967-982.
    8. Sapienza, Alessio & Palomba, Valeria & Gullì, Giuseppe & Frazzica, Andrea & Vasta, Salvatore, 2017. "A new management strategy based on the reallocation of ads-/desorption times: Experimental operation of a full-scale 3 beds adsorption chiller," Applied Energy, Elsevier, vol. 205(C), pages 1081-1090.
    9. Maraver, Daniel & Sin, Ana & Royo, Javier & Sebastián, Fernando, 2013. "Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters," Applied Energy, Elsevier, vol. 102(C), pages 1303-1313.
    10. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    11. Spagnuolo, Antonio & Petraglia, Antonio & Vetromile, Carmela & Formosi, Roberto & Lubritto, Carmine, 2015. "Monitoring and optimization of energy consumption of base transceiver stations," Energy, Elsevier, vol. 81(C), pages 286-293.
    12. Liu, Mingxi & Shi, Yang & Fang, Fang, 2012. "A new operation strategy for CCHP systems with hybrid chillers," Applied Energy, Elsevier, vol. 95(C), pages 164-173.
    13. Ham, Sang-Woo & Kim, Min-Hwi & Choi, Byung-Nam & Jeong, Jae-Weon, 2015. "Energy saving potential of various air-side economizers in a modular data center," Applied Energy, Elsevier, vol. 138(C), pages 258-275.
    14. Antonucci, V. & Branchini, L. & Brunaccini, G. & De Pascale, A. & Ferraro, M. & Melino, F. & Orlandini, V. & Sergi, F., 2017. "Thermal integration of a SOFC power generator and a Na–NiCl2 battery for CHP domestic application," Applied Energy, Elsevier, vol. 185(P2), pages 1256-1267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    2. Beccali, Marco & Bonomolo, Marina & Martorana, Francesca & Catrini, Pietro & Buscemi, Alessandro, 2022. "Electrical hybrid heat pumps assisted by natural gas boilers: a review," Applied Energy, Elsevier, vol. 322(C).
    3. Valeria Palomba & Efstratios Varvagiannis & Sotirios Karellas & Andrea Frazzica, 2019. "Hybrid Adsorption-Compression Systems for Air Conditioning in Efficient Buildings: Design through Validated Dynamic Models," Energies, MDPI, vol. 12(6), pages 1-28, March.
    4. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    5. Owebor, K. & Oko, C.O.C. & Diemuodeke, E.O. & Ogorure, O.J., 2019. "Thermo-environmental and economic analysis of an integrated municipal waste-to-energy solid oxide fuel cell, gas-, steam-, organic fluid- and absorption refrigeration cycle thermal power plants," Applied Energy, Elsevier, vol. 239(C), pages 1385-1401.
    6. Wu, Xiao-long & Xu, Yuan-wu & Zhao, Dong-qi & Zhong, Xiao-bo & Li, Dong & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2020. "Extended-range electric vehicle-oriented thermoelectric surge control of a solid oxide fuel cell system," Applied Energy, Elsevier, vol. 263(C).
    7. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    8. Palomba, Valeria & Dino, Giuseppe E. & Frazzica, Andrea, 2020. "Coupling sorption and compression chillers in hybrid cascade layout for efficient exploitation of renewables: Sizing, design and optimization," Renewable Energy, Elsevier, vol. 154(C), pages 11-28.
    9. Li, Fan & Sun, Bo & Zhang, Chenghui & Zhang, Lizhi, 2018. "Operation optimization for combined cooling, heating, and power system with condensation heat recovery," Applied Energy, Elsevier, vol. 230(C), pages 305-316.
    10. Perrigot, Antoine & Perier-Muzet, Maxime & Ortega, Pascal & Stitou, Driss, 2020. "Technical economic analysis of PV-driven electricity and cold cogeneration systems using particle swarm optimization algorithm," Energy, Elsevier, vol. 211(C).
    11. Xiao-Long Wu & Hong Zhang & Hongli Liu & Yuan-Wu Xu & Jingxuan Peng & Zhiping Xia & Yongan Wang, 2022. "Modeling Analysis of SOFC System Oriented to Working Condition Identification," Energies, MDPI, vol. 15(5), pages 1-19, February.
    12. Jiyuan Kuang & Chenghui Zhang & Fan Li & Bo Sun, 2018. "Dynamic Optimization of Combined Cooling, Heating, and Power Systems with Energy Storage Units," Energies, MDPI, vol. 11(9), pages 1-16, August.
    13. Dai, Huidong & Besser, R.S., 2022. "Understanding hydrogen sulfide impact on a portable, commercial, propane-powered solid-oxide fuel cell," Applied Energy, Elsevier, vol. 307(C).
    14. Takashi Owaku & Hiromi Yamamoto & Atsushi Akisawa, 2023. "Optimal SOFC-CHP Installation Planning and Operation Model Considering Geographic Characteristics of Energy Supply Infrastructure," Energies, MDPI, vol. 16(5), pages 1-19, February.
    15. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Wu, Xiao-long & Xu, Yuan-Wu & Xue, Tao & Zhao, Dong-qi & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2019. "Health state prediction and analysis of SOFC system based on the data-driven entire stage experiment," Applied Energy, Elsevier, vol. 248(C), pages 126-140.
    17. Palomba, Valeria & Borri, Emiliano & Charalampidis, Antonios & Frazzica, Andrea & Cabeza, Luisa F. & Karellas, Sotirios, 2020. "Implementation of a solar-biomass system for multi-family houses: Towards 100% renewable energy utilization," Renewable Energy, Elsevier, vol. 166(C), pages 190-209.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    2. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    3. Fong, K.F. & Lee, C.K., 2019. "Performance investigation of a SOFC-primed micro-combined hybrid cooling and power system in hot and humid regions," Energy, Elsevier, vol. 189(C).
    4. Cristina Ramos Cáceres & Suzanna Törnroth & Mattias Vesterlund & Andreas Johansson & Marcus Sandberg, 2022. "Data-Center Farming: Exploring the Potential of Industrial Symbiosis in a Subarctic Region," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    5. Cuneo, A. & Zaccaria, V. & Tucker, D. & Sorce, A., 2018. "Gas turbine size optimization in a hybrid system considering SOFC degradation," Applied Energy, Elsevier, vol. 230(C), pages 855-864.
    6. Wei, Dajun & Chen, Alian & Sun, Bo & Zhang, Chenghui, 2016. "Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system," Energy, Elsevier, vol. 98(C), pages 296-307.
    7. Li, Fan & Sun, Bo & Zhang, Chenghui & Zhang, Lizhi, 2018. "Operation optimization for combined cooling, heating, and power system with condensation heat recovery," Applied Energy, Elsevier, vol. 230(C), pages 305-316.
    8. Mehr, A.S. & Lanzini, A. & Santarelli, M. & Rosen, Marc A., 2021. "Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches," Energy, Elsevier, vol. 228(C).
    9. Wang, Jiang-Jiang & Xu, Zi-Long & Jin, Hong-Guang & Shi, Guo-hua & Fu, Chao & Yang, Kun, 2014. "Design optimization and analysis of a biomass gasification based BCHP system: A case study in Harbin, China," Renewable Energy, Elsevier, vol. 71(C), pages 572-583.
    10. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    11. Heran Jing & Zhenhua Quan & Yaohua Zhao & Lincheng Wang & Ruyang Ren & Ruixue Dong & Yuting Wu, 2022. "Experimental Investigation of Heat Transfer and Flow Characteristics of Split Natural Cooling System for Data Center Based on Micro Heat Pipe Array," Energies, MDPI, vol. 15(12), pages 1-22, June.
    12. Viviana Cigolotti & Matteo Genovese & Petronilla Fragiacomo, 2021. "Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.
    13. Sijun Xu & Hua Zhang & Zilong Wang, 2023. "Thermal Management and Energy Consumption in Air, Liquid, and Free Cooling Systems for Data Centers: A Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
    14. Kim, Min-Hwi & Dong, Hae-Won & Park, Joon-Young & Jeong, Jae-Weon, 2016. "Primary energy savings in desiccant and evaporative cooling-assisted 100% outdoor air system combined with a fuel cell," Applied Energy, Elsevier, vol. 180(C), pages 446-456.
    15. Wang, Wei & Abdolrashidi, Amirali & Yu, Nanpeng & Wong, Daniel, 2019. "Frequency regulation service provision in data center with computational flexibility," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Kwan, Trevor Hocksun & Katsushi, Fujii & Shen, Yongting & Yin, Shunan & Zhang, Yongchao & Kase, Kiwamu & Yao, Qinghe, 2020. "Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    17. Raffaello Cozzolino, 2018. "Thermodynamic Performance Assessment of a Novel Micro-CCHP System Based on a Low Temperature PEMFC Power Unit and a Half-Effect Li/Br Absorption Chiller," Energies, MDPI, vol. 11(2), pages 1-21, February.
    18. di Gaeta, Alessandro & Reale, Fabrizio & Chiariello, Fabio & Massoli, Patrizio, 2017. "A dynamic model of a 100 kW micro gas turbine fuelled with natural gas and hydrogen blends and its application in a hybrid energy grid," Energy, Elsevier, vol. 129(C), pages 299-320.
    19. Habibi Khalaj, Ali & Scherer, Thomas & K. Halgamuge, Saman, 2016. "Energy, environmental and economical saving potential of data centers with various economizers across Australia," Applied Energy, Elsevier, vol. 183(C), pages 1528-1549.
    20. Wang, Jiangjiang & Xie, Xinqi & Lu, Yanchao & Liu, Boxiang & Li, Xiaojing, 2018. "Thermodynamic performance analysis and comparison of a combined cooling heating and power system integrated with two types of thermal energy storage," Applied Energy, Elsevier, vol. 219(C), pages 114-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:216:y:2018:i:c:p:620-633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.