IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v192y2017icp234-246.html
   My bibliography  Save this article

Long-term impacts of a coal phase-out in Germany as part of a greenhouse gas mitigation strategy

Author

Listed:
  • Heinrichs, Heidi Ursula
  • Markewitz, Peter

Abstract

Germany appears set to miss its CO2 reduction target in 2020. As a result, ideas for additional political measures have been put forward. One such idea involves an early phase-out of coal-fired power plants. However, the possible impacts of such a phase-out on the energy system have not yet been fully analyzed. We therefore apply a German energy system model to analyze these impacts. To do so, we calculate three different scenarios. The first represents a business-as-usual scenario, while the second takes a coal phase-out into account. The third scenario has to achieve the same CO2 reduction as the second without being forced to implement a coal phase-out. Our three scenarios show that a definitive coal phase-out by 2040 would result in only a relatively small amount of additional CO2. However, an equal CO2 reduction can be obtained using a different strategy and slightly lower costs. In the latter scenario, the additional costs are also distributed more evenly across the sectors. The sensitivities analyzed show the robustness of the conclusions drawn. In summary, this analysis outlines what consequences could arise by excluding several options in parallel from a technology portfolio.

Suggested Citation

  • Heinrichs, Heidi Ursula & Markewitz, Peter, 2017. "Long-term impacts of a coal phase-out in Germany as part of a greenhouse gas mitigation strategy," Applied Energy, Elsevier, vol. 192(C), pages 234-246.
  • Handle: RePEc:eee:appene:v:192:y:2017:i:c:p:234-246
    DOI: 10.1016/j.apenergy.2017.01.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917300764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Felix Reitz & Clemens Gerbaulet & Christian von Hirschhausen & Claudia Kemfert & Casimir Lorenz & Pao-Yu Oei, 2014. "Verminderte Kohleverstromung könnte zeitnah einen relevanten Beitrag zum deutschen Klimaschutzziel leisten," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 81(47), pages 1219-1229.
    2. Henning, Hans-Martin & Palzer, Andreas, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1003-1018.
    3. Schmid, Eva & Pahle, Michael & Knopf, Brigitte, 2013. "Renewable electricity generation in Germany: A meta-analysis of mitigation scenarios," Energy Policy, Elsevier, vol. 61(C), pages 1151-1163.
    4. Manfred Horn & Hella Engerer, 2013. "Gewinnung unkonventioneller Energieressourcen setzt OPEC künftig unter Druck," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 80(45), pages 3-11.
    5. Palzer, Andreas & Henning, Hans-Martin, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1019-1034.
    6. An, Chong-Bum & Jeon, Seung-Hoon, 2006. "Demographic change and economic growth: An inverted-U shape relationship," Economics Letters, Elsevier, vol. 92(3), pages 447-454, September.
    7. Blesl, Markus & Das, Anjana & Fahl, Ulrich & Remme, Uwe, 2007. "Role of energy efficiency standards in reducing CO2 emissions in Germany: An assessment with TIMES," Energy Policy, Elsevier, vol. 35(2), pages 772-785, February.
    8. Pregger, Thomas & Nitsch, Joachim & Naegler, Tobias, 2013. "Long-term scenarios and strategies for the deployment of renewable energies in Germany," Energy Policy, Elsevier, vol. 59(C), pages 350-360.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    2. Varone, Alberto & Ferrari, Michele, 2015. "Power to liquid and power to gas: An option for the German Energiewende," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 207-218.
    3. Bartholdsen, Hans-Karl & Eidens, Anna & Löffler, Konstantin & Seehaus, Frederik & Wejda, Felix & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Hirschhausen, Christian von, 2019. "Pathways for Germany's Low-Carbon Energy Transformation Towards 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15), pages 1-33.
    4. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    5. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    6. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    7. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    10. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    11. Thomas Pregger & Tobias Naegler & Wolfgang Weimer-Jehle & Sigrid Prehofer & Wolfgang Hauser, 2020. "Moving towards socio-technical scenarios of the German energy transition—lessons learned from integrated energy scenario building," Climatic Change, Springer, vol. 162(4), pages 1743-1762, October.
    12. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    13. Hai Lu & Jiaquan Yang & Kari Alanne, 2018. "Energy Quality Management for a Micro Energy Network Integrated with Renewables in a Tourist Area: A Chinese Case Study," Energies, MDPI, vol. 11(4), pages 1-24, April.
    14. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    15. Avinash Vijay & Adam Hawkes, 2017. "The Techno-Economics of Small-Scale Residential Heating in Low Carbon Futures," Energies, MDPI, vol. 10(11), pages 1-23, November.
    16. Schill, Wolf-Peter & Zerrahn, Alexander, 2020. "Flexible electricity use for heating in markets with renewable energy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 266.
    17. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    18. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    19. Blumberga, Dagnija & Blumberga, Andra & Barisa, Aiga & Rosa, Marika & Lauka, Dace, 2016. "Modelling the Latvian power market to evaluate its environmental long-term performance," Applied Energy, Elsevier, vol. 162(C), pages 1593-1600.
    20. Gerrit Erichsen & Tobias Zimmermann & Alfons Kather, 2019. "Effect of Different Interval Lengths in a Rolling Horizon MILP Unit Commitment with Non-Linear Control Model for a Small Energy System," Energies, MDPI, vol. 12(6), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:192:y:2017:i:c:p:234-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.