Long-term impacts of a coal phase-out in Germany as part of a greenhouse gas mitigation strategy
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.01.065
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Palzer, Andreas & Henning, Hans-Martin, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1019-1034.
- Blesl, Markus & Das, Anjana & Fahl, Ulrich & Remme, Uwe, 2007. "Role of energy efficiency standards in reducing CO2 emissions in Germany: An assessment with TIMES," Energy Policy, Elsevier, vol. 35(2), pages 772-785, February.
- Pregger, Thomas & Nitsch, Joachim & Naegler, Tobias, 2013. "Long-term scenarios and strategies for the deployment of renewable energies in Germany," Energy Policy, Elsevier, vol. 59(C), pages 350-360.
- An, Chong-Bum & Jeon, Seung-Hoon, 2006. "Demographic change and economic growth: An inverted-U shape relationship," Economics Letters, Elsevier, vol. 92(3), pages 447-454, September.
- Felix Reitz & Clemens Gerbaulet & Christian von Hirschhausen & Claudia Kemfert & Casimir Lorenz & Pao-Yu Oei, 2014. "Verminderte Kohleverstromung könnte zeitnah einen relevanten Beitrag zum deutschen Klimaschutzziel leisten," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 81(47), pages 1219-1229.
- Henning, Hans-Martin & Palzer, Andreas, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1003-1018.
- Schmid, Eva & Pahle, Michael & Knopf, Brigitte, 2013. "Renewable electricity generation in Germany: A meta-analysis of mitigation scenarios," Energy Policy, Elsevier, vol. 61(C), pages 1151-1163.
- Manfred Horn & Hella Engerer, 2013. "Gewinnung unkonventioneller Energieressourcen setzt OPEC künftig unter Druck," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 80(45), pages 3-11.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Varone, Alberto & Ferrari, Michele, 2015. "Power to liquid and power to gas: An option for the German Energiewende," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 207-218.
- Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
- Bartholdsen, Hans-Karl & Eidens, Anna & Löffler, Konstantin & Seehaus, Frederik & Wejda, Felix & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Hirschhausen, Christian von, 2019.
"Pathways for Germany's Low-Carbon Energy Transformation Towards 2050,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15), pages 1-33.
- Hans-Karl Bartholdsen & Anna Eidens & Konstantin Löffler & Frederik Seehaus & Felix Wejda & Thorsten Burandt & Pao-Yu Oei & Claudia Kemfert & Christian von Hirschhausen, 2019. "Pathways for Germany’s Low-Carbon Energy Transformation Towards 2050," Energies, MDPI, vol. 12(15), pages 1-33, August.
- Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
- Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
- Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
- Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
- Thomas Pregger & Tobias Naegler & Wolfgang Weimer-Jehle & Sigrid Prehofer & Wolfgang Hauser, 2020. "Moving towards socio-technical scenarios of the German energy transition—lessons learned from integrated energy scenario building," Climatic Change, Springer, vol. 162(4), pages 1743-1762, October.
- Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
- Avinash Vijay & Adam Hawkes, 2017. "The Techno-Economics of Small-Scale Residential Heating in Low Carbon Futures," Energies, MDPI, vol. 10(11), pages 1-23, November.
- Schill, Wolf-Peter & Zerrahn, Alexander, 2020.
"Flexible electricity use for heating in markets with renewable energy,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 266.
- Schill, Wolf-Peter & Zerrahn, Alexander, 2020. "Flexible electricity use for heating in markets with renewable energy," Applied Energy, Elsevier, vol. 266(C).
- Wolf-Peter Schill & Alexander Zerrahn, 2018. "Flexible Electricity Use for Heating in Markets with Renewable Energy," Discussion Papers of DIW Berlin 1769, DIW Berlin, German Institute for Economic Research.
- Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
- Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019.
"The gap between energy policy challenges and model capabilities,"
Energy Policy, Elsevier, vol. 125(C), pages 503-520.
- Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Munich Reprints in Economics 78282, University of Munich, Department of Economics.
- Blumberga, Dagnija & Blumberga, Andra & Barisa, Aiga & Rosa, Marika & Lauka, Dace, 2016. "Modelling the Latvian power market to evaluate its environmental long-term performance," Applied Energy, Elsevier, vol. 162(C), pages 1593-1600.
- Gerrit Erichsen & Tobias Zimmermann & Alfons Kather, 2019. "Effect of Different Interval Lengths in a Rolling Horizon MILP Unit Commitment with Non-Linear Control Model for a Small Energy System," Energies, MDPI, vol. 12(6), pages 1-24, March.
- Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
- Simon Hilpert, 2020. "Effects of Decentral Heat Pump Operation on Electricity Storage Requirements in Germany," Energies, MDPI, vol. 13(11), pages 1-19, June.
- Arjuna Nebel & Julián Cantor & Sherif Salim & Amro Salih & Dixit Patel, 2022. "The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO 2 Emission Restrictions," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
- Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
- Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
More about this item
Keywords
Coal phase-out; Greenhouse gas mitigation strategy; Energy system model; Germany;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:192:y:2017:i:c:p:234-246. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.