IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v191y2017icp492-501.html
   My bibliography  Save this article

Power capacity profile estimation for building heating and cooling in demand-side management

Author

Listed:
  • Gomez, Juan A.
  • Anjos, Miguel F.

Abstract

This paper presents a new methodology for the estimation of power capacity profiles for smart buildings. The capacity profile can be used within a demand-side management system in order to guide the building temperature operation. It provides a trade-off between the quality of service perceived by the end user and the requirements from the grid in a demand-response context. We use a data-fitting approach and a multiclass classifier to compute the required profile to run a set of electric heating and cooling units via an admission control module. Simulation results validate the performance of the proposed methodology under various conditions, and we compare our approach with neural networks in a real-world-based scenario.

Suggested Citation

  • Gomez, Juan A. & Anjos, Miguel F., 2017. "Power capacity profile estimation for building heating and cooling in demand-side management," Applied Energy, Elsevier, vol. 191(C), pages 492-501.
  • Handle: RePEc:eee:appene:v:191:y:2017:i:c:p:492-501
    DOI: 10.1016/j.apenergy.2017.01.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917300740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    2. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2017. "User satisfaction-induced demand side load management in residential buildings with user budget constraint," Applied Energy, Elsevier, vol. 187(C), pages 352-366.
    3. Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
    4. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    5. Li, Xin & Chen, Hsing Hung & Tao, Xiangnan, 2016. "Pricing and capacity allocation in renewable energy," Applied Energy, Elsevier, vol. 179(C), pages 1097-1105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anjos, Miguel F. & Brotcorne, Luce & Gomez-Herrera, Juan A., 2021. "Optimal setting of time-and-level-of-use prices for an electricity supplier," Energy, Elsevier, vol. 225(C).
    2. Xie, Dunjian & Hui, Hongxun & Ding, Yi & Lin, Zhenzhi, 2018. "Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals," Applied Energy, Elsevier, vol. 216(C), pages 338-347.
    3. Chen, Yuzhu & Guo, Weimin & Du, Na & Yang, Kun & Wang, Jiangjiang, 2024. "Master slave game-based optimization of an off-grid combined cooling and power system coupled with solar thermal and photovoltaics considering carbon cost allocation," Renewable Energy, Elsevier, vol. 229(C).
    4. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    5. R. Rueda & M. P. Cuéllar & M. Molina-Solana & Y. Guo & M. C. Pegalajar, 2019. "Generalised Regression Hypothesis Induction for Energy Consumption Forecasting," Energies, MDPI, vol. 12(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    2. Spoladore, Alessandro & Borelli, Davide & Devia, Francesco & Mora, Flavio & Schenone, Corrado, 2016. "Model for forecasting residential heat demand based on natural gas consumption and energy performance indicators," Applied Energy, Elsevier, vol. 182(C), pages 488-499.
    3. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    4. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2015. "Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach," Applied Energy, Elsevier, vol. 144(C), pages 261-275.
    6. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    7. Alobaidi, Mohammad H. & Chebana, Fateh & Meguid, Mohamed A., 2018. "Robust ensemble learning framework for day-ahead forecasting of household based energy consumption," Applied Energy, Elsevier, vol. 212(C), pages 997-1012.
    8. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    9. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    10. Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
    11. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    12. Wang, Delu & Wang, Yadong & Song, Xuefeng & Liu, Yun, 2018. "Coal overcapacity in China: Multiscale analysis and prediction," Energy Economics, Elsevier, vol. 70(C), pages 244-257.
    13. Ghaboulian Zare, Sara & Alipour, Mohammad & Hafezi, Mehdi & Stewart, Rodney A. & Rahman, Anisur, 2022. "Examining wind energy deployment pathways in complex macro-economic and political settings using a fuzzy cognitive map-based method," Energy, Elsevier, vol. 238(PA).
    14. Yang, Xiu'e & Liu, Shuli & Zou, Yuliang & Ji, Wenjie & Zhang, Qunli & Ahmed, Abdullahi & Han, Xiaojing & Shen, Yongliang & Zhang, Shaoliang, 2022. "Energy-saving potential prediction models for large-scale building: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Peng, Jieyang & Kimmig, Andreas & Niu, Zhibin & Wang, Jiahai & Liu, Xiufeng & Ovtcharova, Jivka, 2021. "A flexible potential-flow model based high resolution spatiotemporal energy demand forecasting framework," Applied Energy, Elsevier, vol. 299(C).
    17. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
    18. Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
    19. Spandagos, Constantine & Ng, Tze Ling, 2018. "Fuzzy model of residential energy decision-making considering behavioral economic concepts," Applied Energy, Elsevier, vol. 213(C), pages 611-625.
    20. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:191:y:2017:i:c:p:492-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.