IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v187y2017icp367-379.html
   My bibliography  Save this article

Innovative design of a thermoelectric generator with extended and segmented pin configurations

Author

Listed:
  • Ali, Haider
  • Yilbas, Bekir Sami
  • Al-Sharafi, Abdullah

Abstract

A thermoelectric generator is one of the key candidates for the renewable energy devices, which directly converts waste heat into electricity. The wide applications of the device are suppressed because of the device low efficiency. In this paper, a new innovative design of the thermoelectric generator incorporating the extended pin with segmented pin configuration is introduced. The new design allows the device operating at two different cold junction temperatures. The maximum efficiency and the output power for the innovative design of thermoelectric device are formulated. The performance of the thermoelectric device is evaluated using the operating parameters such as the hot and cold junction temperatures in terms of temperature ratio, and external load resistance ratio. The reveals that the innovative design improves the maximum efficiency and output power of the thermoelectric generator. Increasing the cold junction temperature difference increases the device maximum efficiency by 3.5–6.2%. The maximum device output power and maximum thermal efficiency occur at different values of external load parameter. However, the reduction in the efficiency is considerably small for the external load parameter maximizing the device output work.

Suggested Citation

  • Ali, Haider & Yilbas, Bekir Sami & Al-Sharafi, Abdullah, 2017. "Innovative design of a thermoelectric generator with extended and segmented pin configurations," Applied Energy, Elsevier, vol. 187(C), pages 367-379.
  • Handle: RePEc:eee:appene:v:187:y:2017:i:c:p:367-379
    DOI: 10.1016/j.apenergy.2016.11.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191631635X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Temizer, İlker & İlkılıç, Cumali, 2016. "The performance and analysis of the thermoelectric generator system used in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 141-151.
    2. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wang, Yingzi & Meng, Fangfang & Wu, Jing, 2016. "Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system," Applied Energy, Elsevier, vol. 177(C), pages 25-39.
    3. Shen, Limei & Pu, Xiwang & Sun, Yongjun & Chen, Jiongde, 2016. "A study on thermoelectric technology application in net zero energy buildings," Energy, Elsevier, vol. 113(C), pages 9-24.
    4. Erturun, Ugur & Erermis, Kaan & Mossi, Karla, 2015. "Influence of leg sizing and spacing on power generation and thermal stresses of thermoelectric devices," Applied Energy, Elsevier, vol. 159(C), pages 19-27.
    5. Xiao, Jinsheng & Yang, Tianqi & Li, Peng & Zhai, Pengcheng & Zhang, Qingjie, 2012. "Thermal design and management for performance optimization of solar thermoelectric generator," Applied Energy, Elsevier, vol. 93(C), pages 33-38.
    6. Yu, Shuhai & Du, Qing & Diao, Hai & Shu, Gequn & Jiao, Kui, 2015. "Start-up modes of thermoelectric generator based on vehicle exhaust waste heat recovery," Applied Energy, Elsevier, vol. 138(C), pages 276-290.
    7. Gou, Xiaolong & Xiao, Heng & Yang, Suwen, 2010. "Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system," Applied Energy, Elsevier, vol. 87(10), pages 3131-3136, October.
    8. Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.
    9. Ali, Haider & Yilbas, Bekir Sami & Al-Sulaiman, Fahad A., 2016. "Segmented thermoelectric generator: Influence of pin shape configuration on the device performance," Energy, Elsevier, vol. 111(C), pages 439-452.
    10. Ming, T. & Wu, Y. & Peng, C. & Tao, Y., 2015. "Thermal analysis on a segmented thermoelectric generator," Energy, Elsevier, vol. 80(C), pages 388-399.
    11. Zhu, Wei & Deng, Yuan & Wang, Yao & Shen, Shengfei & Gulfam, Raza, 2016. "High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management," Energy, Elsevier, vol. 100(C), pages 91-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Fernández-Yáñez, P. & Armas, O. & Kiwan, R. & Stefanopoulou, A.G. & Boehman, A.L., 2018. "A thermoelectric generator in exhaust systems of spark-ignition and compression-ignition engines. A comparison with an electric turbo-generator," Applied Energy, Elsevier, vol. 229(C), pages 80-87.
    3. Ge, Ya & He, Kui & Xiao, Liehui & Yuan, Wuzhi & Huang, Si-Min, 2022. "Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm," Renewable Energy, Elsevier, vol. 183(C), pages 294-303.
    4. Li, Bo & Huang, Kuo & Yan, Yuying & Li, Yong & Twaha, Ssennoga & Zhu, Jie, 2017. "Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles," Applied Energy, Elsevier, vol. 205(C), pages 868-879.
    5. Wang, Yiping & Li, Shuai & Xie, Xu & Deng, Yadong & Liu, Xun & Su, Chuqi, 2018. "Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger," Applied Energy, Elsevier, vol. 218(C), pages 391-401.
    6. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    7. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    8. Chen, Wei-Hsin & Chiou, Yi-Bin & Chein, Rei-Yu & Uan, Jun-Yen & Wang, Xiao-Dong, 2022. "Power generation of thermoelectric generator with plate fins for recovering low-temperature waste heat," Applied Energy, Elsevier, vol. 306(PA).
    9. Ouyang, Zhongliang & Li, Dawen, 2018. "Design of segmented high-performance thermoelectric generators with cost in consideration," Applied Energy, Elsevier, vol. 221(C), pages 112-121.
    10. Ge, Ya & Lin, Yousheng & He, Qing & Wang, Wenhao & Chen, Jiechao & Huang, Si-Min, 2021. "Geometric optimization of segmented thermoelectric generators for waste heat recovery systems using genetic algorithm," Energy, Elsevier, vol. 233(C).
    11. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.
    12. Hiranandani, Karan & Aravind, B. & Ratna Kishore, V. & Kumar, Sudarshan, 2020. "Development of a numerical model for performance prediction of an integrated microcombustor-thermoelectric power generator," Energy, Elsevier, vol. 192(C).
    13. Ma, Xiaonan & Shu, Gequn & Tian, Hua & Xu, Wen & Chen, Tianyu, 2019. "Performance assessment of engine exhaust-based segmented thermoelectric generators by length ratio optimization," Applied Energy, Elsevier, vol. 248(C), pages 614-625.
    14. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    15. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    16. Chen, Wei-Hsin & Chiou, Yi-Bin, 2020. "Geometry design for maximizing output power of segmented skutterudite thermoelectric generator by evolutionary computation," Applied Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    2. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    3. Fan, Shifa & Gao, Yuanwen, 2018. "Numerical simulation on thermoelectric and mechanical performance of annular thermoelectric generator," Energy, Elsevier, vol. 150(C), pages 38-48.
    4. Zhang, Houcheng & Xu, Haoran & Chen, Bin & Dong, Feifei & Ni, Meng, 2017. "Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells," Energy, Elsevier, vol. 132(C), pages 280-288.
    5. Shen, Zu-Guo & Liu, Xun & Chen, Shuai & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2018. "Theoretical analysis on a segmented annular thermoelectric generator," Energy, Elsevier, vol. 157(C), pages 297-313.
    6. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    7. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Yin, Gang, 2016. "Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer," Energy, Elsevier, vol. 95(C), pages 367-379.
    8. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    9. Yilbas, Bekir Sami & Akhtar, S.S. & Sahin, A.Z., 2016. "Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations," Energy, Elsevier, vol. 114(C), pages 52-63.
    10. Soprani, S. & Haertel, J.H.K. & Lazarov, B.S. & Sigmund, O. & Engelbrecht, K., 2016. "A design approach for integrating thermoelectric devices using topology optimization," Applied Energy, Elsevier, vol. 176(C), pages 49-64.
    11. Jia, Xiao-Dong & Wang, Yuan-Jing & Gao, Yuan-Wen, 2017. "Numerical simulation of thermoelectric performance of linear-shaped thermoelectric generators under transient heat supply," Energy, Elsevier, vol. 130(C), pages 276-285.
    12. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    13. Yazawa, Kazuaki & Koh, Yee Rui & Shakouri, Ali, 2013. "Optimization of thermoelectric topping combined steam turbine cycles for energy economy," Applied Energy, Elsevier, vol. 109(C), pages 1-9.
    14. Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
    15. Hazama, Hirofumi & Masuoka, Yumi & Suzumura, Akitoshi & Matsubara, Masato & Tajima, Shin & Asahi, Ryoji, 2018. "Cylindrical thermoelectric generator with water heating system for high solar energy conversion efficiency," Applied Energy, Elsevier, vol. 226(C), pages 381-388.
    16. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    17. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2017. "Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies," Energy, Elsevier, vol. 131(C), pages 230-238.
    18. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
    19. Jinlong Chen & Kewen Li & Changwei Liu & Mao Li & Youchang Lv & Lin Jia & Shanshan Jiang, 2017. "Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures," Energies, MDPI, vol. 10(9), pages 1-15, September.
    20. Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:187:y:2017:i:c:p:367-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.