IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v164y2016icp540-552.html
   My bibliography  Save this article

Operating strategies for fuel processing systems with a focus on water–gas shift reactor stability

Author

Listed:
  • Krekel, Daniel
  • Samsun, Remzi Can
  • Pasel, Joachim
  • Prawitz, Matthias
  • Peters, Ralf
  • Stolten, Detlef

Abstract

This contribution deals with the development of suitable operating strategies for diesel/kerosene-fueled fuel cell APUs. The focus is on the autothermal reformer (ATR) and the water–gas shift (WGS) reactor. In the first part shutdown experiments under high-temperature shift (HTS) conditions were used to identify the possible detrimental effect of higher hydrocarbons on the activity and stability of two commercial WGS catalysts. The results indicated that 220ppmv higher hydrocarbons had no negative effect on the catalyst activity/stability. The second part presents fuel processing system experiments, which revealed much higher concentrations of higher hydrocarbons during transients like startup/shutdown than the concentrations investigated in the first part. Through the development of new startup/shutdown strategies concentrations of higher hydrocarbons were lowered by a factor of up to 10 for startup and of up to 400 for shutdown. The results were reproduced using four different diesel and kerosene fuels. The newly developed strategies improve fuel conversion in the reformer and may possibly prevent catalyst deactivation in the water–gas shift reactor during transient conditions.

Suggested Citation

  • Krekel, Daniel & Samsun, Remzi Can & Pasel, Joachim & Prawitz, Matthias & Peters, Ralf & Stolten, Detlef, 2016. "Operating strategies for fuel processing systems with a focus on water–gas shift reactor stability," Applied Energy, Elsevier, vol. 164(C), pages 540-552.
  • Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:540-552
    DOI: 10.1016/j.apenergy.2015.11.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915015780
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdul Rasheed, Raj Kamal & Chan, Siew Hwa, 2015. "Transient carbon monoxide poisoning kinetics during warm-up period of a high-temperature PEMFC – Physical model and parametric study," Applied Energy, Elsevier, vol. 140(C), pages 44-51.
    2. Cheng, Yung-Hsiang & Chang, Yu-Hern & Lu, I.J., 2015. "Urban transportation energy and carbon dioxide emission reduction strategies," Applied Energy, Elsevier, vol. 157(C), pages 953-973.
    3. Pasel, Joachim & Samsun, Remzi Can & Tschauder, Andreas & Peters, Ralf & Stolten, Detlef, 2015. "A novel reactor type for autothermal reforming of diesel fuel and kerosene," Applied Energy, Elsevier, vol. 150(C), pages 176-184.
    4. Cui, Qiang & Li, Ye, 2015. "An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries," Applied Energy, Elsevier, vol. 141(C), pages 209-217.
    5. Samsun, Remzi Can & Pasel, Joachim & Janßen, Holger & Lehnert, Werner & Peters, Ralf & Stolten, Detlef, 2014. "Design and test of a 5kWe high-temperature polymer electrolyte fuel cell system operated with diesel and kerosene," Applied Energy, Elsevier, vol. 114(C), pages 238-249.
    6. Pregelj, Boštjan & Vrečko, Darko & Petrovčič, Janko & Jovan, Vladimir & Dolanc, Gregor, 2015. "A model-based approach to battery selection for truck onboard fuel cell-based APU in an anti-idling application," Applied Energy, Elsevier, vol. 137(C), pages 64-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    2. Samsun, Remzi Can & Prawitz, Matthias & Tschauder, Andreas & Pasel, Joachim & Pfeifer, Peter & Peters, Ralf & Stolten, Detlef, 2018. "An integrated diesel fuel processing system with thermal start-up for fuel cells," Applied Energy, Elsevier, vol. 226(C), pages 145-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:164:y:2016:i:c:p:540-552. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.