IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v147y2015icp59-66.html
   My bibliography  Save this article

A new skeletal chemical kinetic model of gasoline surrogate fuel with nitric oxide in HCCI combustion

Author

Listed:
  • Zheng, Zhaolei
  • Lv, Zhumei

Abstract

A new skeletal mechanism of toluene reference fuels with nitric oxide (TRF-NO) in homogeneous charge compression ignition (HCCI) combustion is presented to investigate the effects of NO in exhaust gas recirculation (EGR) on combustion. The skeletal mechanism of TRF-NO, consisting of 80 species and 184 reactions, works in combination with the mechanisms of toluene and primary reference fuel (PRF). The toluene sub-mechanism is developed by simplifying detailed or semi-detailed mechanisms based on reaction paths and sensitivity analysis. Cross reactions are considered to show the interactions of the three TRF components when combined. The reaction paths of NO are summarized by analysis of the detailed NO mechanism to reflect the effects of NO on TRF. Combining reaction paths with sensitivity analysis at different conditions, the simplified NO sub-mechanism is proposed. Then, the final TRF-NO skeletal mechanism is formed by combining the NO sub-mechanism with the TRF mechanism. The new skeletal mechanism is validated by comparison of the experimental data in both a shock tube and an HCCI engine over a large range of temperatures, pressures, and equivalence ratios with single-fuel component and their blends of TRF. Furthermore, validations of the new skeletal mechanism also include the effects of NO on ignition delay times with different compositions, proportions of three TRF components, and under different operation conditions.

Suggested Citation

  • Zheng, Zhaolei & Lv, Zhumei, 2015. "A new skeletal chemical kinetic model of gasoline surrogate fuel with nitric oxide in HCCI combustion," Applied Energy, Elsevier, vol. 147(C), pages 59-66.
  • Handle: RePEc:eee:appene:v:147:y:2015:i:c:p:59-66
    DOI: 10.1016/j.apenergy.2015.01.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915000987
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.01.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Junnian & Caton, Jerald A., 2012. "Effects of operating parameters on nitrogen oxides emissions for a natural gas fueled homogeneous charged compression ignition engine (HCCI): Results from a thermodynamic model with detailed chemistry," Applied Energy, Elsevier, vol. 92(C), pages 386-394.
    2. Hairuddin, A. Aziz & Yusaf, Talal & Wandel, Andrew P., 2014. "A review of hydrogen and natural gas addition in diesel HCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 739-761.
    3. Fathi, Morteza & Saray, R. Khoshbakhti & Checkel, M. David, 2011. "The influence of Exhaust Gas Recirculation (EGR) on combustion and emissions of n-heptane/natural gas fueled Homogeneous Charge Compression Ignition (HCCI) engines," Applied Energy, Elsevier, vol. 88(12), pages 4719-4724.
    4. Verschaeren, Roel & Schaepdryver, Wouter & Serruys, Thomas & Bastiaen, Marc & Vervaeke, Lieven & Verhelst, Sebastian, 2014. "Experimental study of NOx reduction on a medium speed heavy duty diesel engine by the application of EGR (exhaust gas recirculation) and Miller timing," Energy, Elsevier, vol. 76(C), pages 614-621.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.
    2. Deng, Banglin & Li, Qing & Chen, Yangyang & Li, Meng & Liu, Aodong & Ran, Jiaqi & Xu, Ying & Liu, Xiaoqiang & Fu, Jianqin & Feng, Renhua, 2019. "The effect of air/fuel ratio on the CO and NOx emissions for a twin-spark motorcycle gasoline engine under wide range of operating conditions," Energy, Elsevier, vol. 169(C), pages 1202-1213.
    3. Bissoli, M. & Frassoldati, A. & Cuoci, A. & Ranzi, E. & Mehl, M. & Faravelli, T., 2016. "A new predictive multi-zone model for HCCI engine combustion," Applied Energy, Elsevier, vol. 178(C), pages 826-843.
    4. Raza, Mohsin & Wang, Hu & Yao, Mingfa, 2019. "Numerical investigation of reactivity controlled compression ignition (RCCI) using different multi-component surrogate combinations of diesel and gasoline," Applied Energy, Elsevier, vol. 242(C), pages 462-479.
    5. Komninos, N.P. & Rakopoulos, C.D., 2016. "Heat transfer in hcci phenomenological simulation models: A review," Applied Energy, Elsevier, vol. 181(C), pages 179-209.
    6. Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
    7. Wu, Zhijun & Kang, Zhe & Deng, Jun & Hu, Zongjie & Li, Liguang, 2016. "Effect of oxygen content on n-heptane auto-ignition characteristics in a HCCI engine," Applied Energy, Elsevier, vol. 184(C), pages 594-604.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moradi, Jamshid & Gharehghani, Ayat & Mirsalim, Mostafa, 2020. "Numerical investigation on the effect of oxygen in combustion characteristics and to extend low load operating range of a natural-gas HCCI engine," Applied Energy, Elsevier, vol. 276(C).
    2. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    3. Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
    4. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    5. Xie, Hui & Li, Le & Chen, Tao & Yu, Weifei & Wang, Xinyan & Zhao, Hua, 2013. "Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium–high load," Applied Energy, Elsevier, vol. 101(C), pages 622-633.
    6. Hosseini, S. Mohammad & Ahmadi, Rouhollah, 2017. "Performance and emissions characteristics in the combustion of co-fuel diesel-hydrogen in a heavy duty engine," Applied Energy, Elsevier, vol. 205(C), pages 911-925.
    7. Moonchan Kim & Jungmo Oh & Changhee Lee, 2018. "Study on Combustion and Emission Characteristics of Marine Diesel Oil and Water-In-Oil Emulsified Marine Diesel Oil," Energies, MDPI, vol. 11(7), pages 1-16, July.
    8. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    9. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    10. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    11. Jafarmadar, Samad & Nemati, Peyman, 2017. "Analysis of Exhaust Gas Recirculation (EGR) effects on exergy terms in an engine operating with diesel oil and hydrogen," Energy, Elsevier, vol. 126(C), pages 746-755.
    12. Yew Heng Teoh & Hishammudin Afifi Huspi & Heoy Geok How & Farooq Sher & Zia Ud Din & Thanh Danh Le & Huu Tho Nguyen, 2021. "Effect of Intake Air Temperature and Premixed Ratio on Combustion and Exhaust Emissions in a Partial HCCI-DI Diesel Engine," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    13. Noh, Hyun Kwon & No, Soo-Young, 2017. "Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review," Applied Energy, Elsevier, vol. 208(C), pages 782-802.
    14. Ahmadi, Rouhollah & Hosseini, S. Mohammad, 2018. "Numerical investigation on adding/substituting hydrogen in the CDC and RCCI combustion in a heavy duty engine," Applied Energy, Elsevier, vol. 213(C), pages 450-468.
    15. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    16. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2013. "Experimental investigation of cyclic variations in HCCI combustion parameters for gasoline like fuels using statistical methods," Applied Energy, Elsevier, vol. 111(C), pages 310-323.
    17. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Song, Heping & Liu, Changpeng & Li, Yanfei & Wang, Zhi & Chen, Longfei & He, Xin & Wang, Jianxin, 2018. "An exploration of utilizing low-pressure diesel injection for natural gas dual-fuel low-temperature combustion," Energy, Elsevier, vol. 153(C), pages 248-255.
    19. Bahlouli, Keyvan & Khoshbakhti Saray, Rahim, 2016. "Energetic and exergetic analyses of a new energy system for heating and power production purposes," Energy, Elsevier, vol. 106(C), pages 390-399.
    20. Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:147:y:2015:i:c:p:59-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.