IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v134y2014icp176-196.html
   My bibliography  Save this article

Energy, comfort and environmental assessment of different building envelope techniques in a Mediterranean climate with a hot dry summer

Author

Listed:
  • Stazi, Francesca
  • Tomassoni, Elisa
  • Bonfigli, Cecilia
  • Di Perna, Costanzo

Abstract

The EU regulations on energy saving have been implemented in Italy with the adoption of the North-European super-insulated model that led to the construction of buildings not much related to their climatic context. The European Directives 2010/31/EU and 2012/27/EU highlighted the importance to consider the specific climate but the development of a technical culture suitable for a temperate climate still remains an open question.

Suggested Citation

  • Stazi, Francesca & Tomassoni, Elisa & Bonfigli, Cecilia & Di Perna, Costanzo, 2014. "Energy, comfort and environmental assessment of different building envelope techniques in a Mediterranean climate with a hot dry summer," Applied Energy, Elsevier, vol. 134(C), pages 176-196.
  • Handle: RePEc:eee:appene:v:134:y:2014:i:c:p:176-196
    DOI: 10.1016/j.apenergy.2014.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914008265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pisello, Anna Laura & Goretti, Michele & Cotana, Franco, 2012. "A method for assessing buildings’ energy efficiency by dynamic simulation and experimental activity," Applied Energy, Elsevier, vol. 97(C), pages 419-429.
    2. Dodoo, Ambrose & Gustavsson, Leif & Sathre, Roger, 2012. "Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building," Applied Energy, Elsevier, vol. 92(C), pages 462-472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    2. Ling, Haoshu & Chen, Chao & Wei, Shen & Guan, Yong & Ma, Caiwen & Xie, Guangya & Li, Na & Chen, Ziguang, 2015. "Effect of phase change materials on indoor thermal environment under different weather conditions and over a long time," Applied Energy, Elsevier, vol. 140(C), pages 329-337.
    3. Buratti, C. & Palladino, D. & Ricciardi, P., 2016. "Application of a new 13-value thermal comfort scale to moderate environments," Applied Energy, Elsevier, vol. 180(C), pages 859-866.
    4. Bruno, Roberto & Bevilacqua, Piero & Cuconati, Teresa & Arcuri, Natale, 2019. "Energy evaluations of an innovative multi-storey wooden near Zero Energy Building designed for Mediterranean areas," Applied Energy, Elsevier, vol. 238(C), pages 929-941.
    5. Serrano, Susana & de Gracia, Alvaro & Cabeza, Luisa F., 2016. "Adaptation of rammed earth to modern construction systems: Comparative study of thermal behavior under summer conditions," Applied Energy, Elsevier, vol. 175(C), pages 180-188.
    6. Nadine May & Edeltraud Guenther & Peer Haller, 2017. "Environmental Indicators for the Evaluation of Wood Products in Consideration of Site-Dependent Aspects: A Review and Integrated Approach," Sustainability, MDPI, vol. 9(10), pages 1-31, October.
    7. Echarri-Iribarren, Victor & Echarri-Iribarren, Fernando & Rizo-Maestre, Carlos, 2019. "Ceramic panels versus aluminium in buildings: Energy consumption and environmental impact assessment with a new methodology," Applied Energy, Elsevier, vol. 233, pages 959-974.
    8. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    9. Helena Monteiro & Fausto Freire & John E. Fernández, 2020. "Life-Cycle Assessment of Alternative Envelope Construction for a New House in South-Western Europe: Embodied and Operational Magnitude," Energies, MDPI, vol. 13(16), pages 1-20, August.
    10. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    11. Gupta, V. & Deb, C., 2023. "Envelope design for low-energy buildings in the tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    12. Eduardo Roque & Romeu Vicente & Ricardo M. S. F. Almeida & Victor M. Ferreira, 2022. "The Impact of Thermal Inertia on the Indoor Thermal Environment of Light Steel Framing Constructions," Energies, MDPI, vol. 15(9), pages 1-17, April.
    13. Rodrigues, Eugénio & Fernandes, Marco S. & Gaspar, Adélio Rodrigues & Gomes, Álvaro & Costa, José J., 2019. "Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Avendaño-Vera, Constanza & Martinez-Soto, Aner & Marincioni, Valentina, 2020. "Determination of optimal thermal inertia of building materials for housing in different Chilean climate zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Eduardo Roque & Romeu Vicente & Ricardo M. S. F. Almeida, 2021. "Indoor Thermal Environment Challenges of Light Steel Framing in the Southern European Context," Energies, MDPI, vol. 14(21), pages 1-23, October.
    16. Hong, Taehoon & Kim, Jimin & Lee, Minhyun, 2019. "A multi-objective optimization model for determining the building design and occupant behaviors based on energy, economic, and environmental performance," Energy, Elsevier, vol. 174(C), pages 823-834.
    17. Long, Linshuang & Ye, Hong & Liu, Minghou, 2016. "A new insight into opaque envelopes in a passive solar house: Properties and roles," Applied Energy, Elsevier, vol. 183(C), pages 685-699.
    18. de Rubeis, Tullio & Nardi, Iole & Ambrosini, Dario & Paoletti, Domenica, 2018. "Is a self-sufficient building energy efficient? Lesson learned from a case study in Mediterranean climate," Applied Energy, Elsevier, vol. 218(C), pages 131-145.
    19. Kai Jiao & Lin Lu & Liang Zhao & Gang Wang, 2024. "Towards Passive Building Thermal Regulation: A State-of-the-Art Review on Recent Progress of PCM-Integrated Building Envelopes," Sustainability, MDPI, vol. 16(15), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mavromatidis, Lazaros Elias & Bykalyuk, Anna & Lequay, Hervé, 2013. "Development of polynomial regression models for composite dynamic envelopes’ thermal performance forecasting," Applied Energy, Elsevier, vol. 104(C), pages 379-391.
    2. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    3. Ascione, Fabrizio & Bianco, Nicola & de’ Rossi, Filippo & Turni, Gianluca & Vanoli, Giuseppe Peter, 2013. "Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning?," Applied Energy, Elsevier, vol. 104(C), pages 845-859.
    4. Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
    5. Dodoo, Ambrose & Gustavsson, Leif, 2013. "Life cycle primary energy use and carbon footprint of wood-frame conventional and passive houses with biomass-based energy supply," Applied Energy, Elsevier, vol. 112(C), pages 834-842.
    6. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2015. "Consensus-based low carbon domestic design framework for sustainable homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 417-432.
    7. Karmellos, M. & Kiprakis, A. & Mavrotas, G., 2015. "A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies," Applied Energy, Elsevier, vol. 139(C), pages 131-150.
    8. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    9. Pisello, Anna Laura & Asdrubali, Francesco, 2014. "Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies," Applied Energy, Elsevier, vol. 133(C), pages 224-235.
    10. Balvís, Eduardo & Sampedro, Óscar & Zaragoza, Sonia & Paredes, Angel & Michinel, Humberto, 2016. "A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings," Applied Energy, Elsevier, vol. 177(C), pages 60-70.
    11. Eleftheriadis, Stathis & Mumovic, Dejan & Greening, Paul, 2017. "Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 811-825.
    12. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2014. "Effects of heat and electricity saving measures in district-heated multistory residential buildings," Applied Energy, Elsevier, vol. 118(C), pages 57-67.
    13. Petrovic, Bojana & Myhren, Jonn Are & Zhang, Xingxing & Wallhagen, Marita & Eriksson, Ola, 2019. "Life cycle assessment of a wooden single-family house in Sweden," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Crawford, Robert H. & Bartak, Erika L. & Stephan, André & Jensen, Christopher A., 2016. "Evaluating the life cycle energy benefits of energy efficiency regulations for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 435-451.
    15. Anna Laura Pisello & Michael Bobker & Franco Cotana, 2012. "A Building Energy Efficiency Optimization Method by Evaluating the Effective Thermal Zones Occupancy," Energies, MDPI, vol. 5(12), pages 1-22, December.
    16. Janneke van Oorschot & Benjamin Sprecher & Bart Rijken & Pieter Witteveen & Merlijn Blok & Nico Schouten & Ester van der Voet, 2023. "Toward a low‐carbon and circular building sector: Building strategies and urbanization pathways for the Netherlands," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 535-547, April.
    17. Bastien, Diane & Athienitis, Andreas K., 2018. "Passive thermal energy storage, part 1: Design concepts and metrics," Renewable Energy, Elsevier, vol. 115(C), pages 1319-1327.
    18. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    19. Naji, Sareh & Shamshirband, Shahaboddin & Basser, Hossein & Keivani, Afram & Alengaram, U. Johnson & Jumaat, Mohd Zamin & Petković, Dalibor, 2016. "Application of adaptive neuro-fuzzy methodology for estimating building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1520-1528.
    20. Pisello, Anna Laura & Petrozzi, Alessandro & Castaldo, Veronica Lucia & Cotana, Franco, 2016. "On an innovative integrated technique for energy refurbishment of historical buildings: Thermal-energy, economic and environmental analysis of a case study," Applied Energy, Elsevier, vol. 162(C), pages 1313-1322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:134:y:2014:i:c:p:176-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.