IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1261-1268.html
   My bibliography  Save this article

Experimental characterization of a solid industrial by-product as material for high temperature sensible thermal energy storage (TES)

Author

Listed:
  • Miró, Laia
  • Navarro, M. Elena
  • Suresh, Priyamvadha
  • Gil, Antoni
  • Fernández, A. Inés
  • Cabeza, Luisa F.

Abstract

Nowadays, industrial processes use large quantities of fuel and electricity that produce heat, but much of which is wasted either to the atmosphere or to water. Many types of equipment have been developed to re-use some of this waste heat. Waste heat usefulness is determined by its temperature and its exergy; the higher the temperature the higher the quality or value. There are mainly three reversible methods to store it: sensible, latent and chemical. In this case, a solid by-product from the potash industry is tested in two different shapes to be used for industrial sensible heat recovery in high temperature, in a range of 100–200°C. This heat recovery could be used for cogeneration, energy efficiency measures, passive heat recovery, solar cooling, etc. Within all the properties that define the suitability of a material to store sensible heat, waste materials stand out especially for their low costs and availability. This heat recovery could be used for cogeneration, energy efficiency measures, passive heat recovery, solar cooling, etc. For that, a complete analysis of thermophysical properties was done both, at laboratory and a pilot plant scale. At the laboratory, the material composition was found to be NaCl as major phase. With differential scanning calorimetry (DSC) the specific heat capacity was determined as 0.738kJ/kg°C. The thermal stability was checked from ambient temperature to 800°C and the density and the conductivity at room temperature were also calculated. Also, a corrosion test was performed using samples of stainless steel at three degradation times, these results were compared with those obtained with Solar salt, a commercial and extended option for thermal energy storage (TES) applications at high temperature. At pilot plant scale, using 59kg of storage material, thermal cycles were performed with the storage material heating and cooling it from 100 to 200°C varying parameters as the heat transfer fluid (HTF) flow rate and the duration of the cycles.

Suggested Citation

  • Miró, Laia & Navarro, M. Elena & Suresh, Priyamvadha & Gil, Antoni & Fernández, A. Inés & Cabeza, Luisa F., 2014. "Experimental characterization of a solid industrial by-product as material for high temperature sensible thermal energy storage (TES)," Applied Energy, Elsevier, vol. 113(C), pages 1261-1268.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1261-1268
    DOI: 10.1016/j.apenergy.2013.08.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913007265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.08.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    2. Guillot, Stéphanie & Faik, Abdessamad & Rakhmatullin, Aydar & Lambert, Julien & Veron, Emmanuel & Echegut, Patrick & Bessada, Catherine & Calvet, Nicolas & Py, Xavier, 2012. "Corrosion effects between molten salts and thermal storage material for concentrated solar power plants," Applied Energy, Elsevier, vol. 94(C), pages 174-181.
    3. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. López-Sabirón, Ana M. & Royo, Patricia & Ferreira, Victor J. & Aranda-Usón, Alfonso & Ferreira, Germán, 2014. "Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption," Applied Energy, Elsevier, vol. 135(C), pages 616-624.
    2. Mamani, V. & Gutiérrez, A. & Fernández, A.I. & Ushak, S., 2020. "Industrial carnallite-waste for thermochemical energy storage application," Applied Energy, Elsevier, vol. 265(C).
    3. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2017. "Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1320-1338.
    4. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    5. Jin-Hwan Oh & Yujin Nam, 2015. "Study on the Effect of Ground Heat Storage by Solar Heat Using Numerical Simulation," Energies, MDPI, vol. 8(12), pages 1-19, December.
    6. Cabeza, Luisa F. & de Gracia, Alvaro & Zsembinszki, Gabriel & Borri, Emiliano, 2021. "Perspectives on thermal energy storage research," Energy, Elsevier, vol. 231(C).
    7. Nieto-Maestre, Javier & Muñoz-Sánchez, Belén & Fernández, Angel G. & Faik, Abdessamad & Grosu, Yaroslav & García-Romero, Ana, 2020. "Compatibility of container materials for Concentrated Solar Power with a solar salt and alumina based nanofluid: A study under dynamic conditions," Renewable Energy, Elsevier, vol. 146(C), pages 384-396.
    8. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Lee, Kyoung Ok, 2016. "Experimental observations on the heat transfer enhancement caused by natural convection during melting of solid–liquid phase change materials (PCMs)," Applied Energy, Elsevier, vol. 162(C), pages 1453-1461.
    9. Laura Boquera & David Pons & Ana Inés Fernández & Luisa F. Cabeza, 2021. "Characterization of Supplementary Cementitious Materials and Fibers to Be Implemented in High Temperature Concretes for Thermal Energy Storage (TES) Application," Energies, MDPI, vol. 14(16), pages 1-26, August.
    10. Michael Krüger & Jürgen Haunstetter & Joachim Hahn & Philipp Knödler & Stefan Zunft, 2020. "Development of Steelmaking Slag Based Solid Media Heat Storage for Solar Power Tower Using Air as Heat Transfer Fluid: The Results of the Project REslag," Energies, MDPI, vol. 13(22), pages 1-23, November.
    11. Calderón-Vásquez, Ignacio & Cortés, Eduardo & García, Jesús & Segovia, Valentina & Caroca, Alejandro & Sarmiento, Cristóbal & Barraza, Rodrigo & Cardemil, José M., 2021. "Review on modeling approaches for packed-bed thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Broberg Viklund, Sarah & Karlsson, Magnus, 2015. "Industrial excess heat use: Systems analysis and CO2 emissions reduction," Applied Energy, Elsevier, vol. 152(C), pages 189-197.
    13. Tiskatine, R. & Eddemani, A. & Gourdo, L. & Abnay, B. & Ihlal, A. & Aharoune, A. & Bouirden, L., 2016. "Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage," Applied Energy, Elsevier, vol. 171(C), pages 243-255.
    14. Gutierrez, Andrea & Miró, Laia & Gil, Antoni & Rodríguez-Aseguinolaza, Javier & Barreneche, Camila & Calvet, Nicolas & Py, Xavier & Inés Fernández, A. & Grágeda, Mario & Ushak, Svetlana & Cabeza, Luis, 2016. "Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 763-783.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    2. Opolot, Michael & Zhao, Chunrong & Liu, Ming & Mancin, Simone & Bruno, Frank & Hooman, Kamel, 2022. "A review of high temperature (≥ 500 °C) latent heat thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    4. Vigneshwaran, K. & Sodhi, Gurpreet Singh & Muthukumar, P. & Guha, Anurag & Senthilmurugan, S., 2019. "Experimental and numerical investigations on high temperature cast steel based sensible heat storage system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    6. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    7. Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.
    8. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    9. Calvet, Nicolas & Gomez, Judith C. & Faik, Abdessamad & Roddatis, Vladimir V. & Meffre, Antoine & Glatzmaier, Greg C. & Doppiu, Stefania & Py, Xavier, 2013. "Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system," Applied Energy, Elsevier, vol. 109(C), pages 387-393.
    10. Castell, A. & Solé, C., 2015. "An overview on design methodologies for liquid–solid PCM storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 289-307.
    11. Nahhas, Tamar & Py, Xavier & Sadiki, Najim, 2019. "Experimental investigation of basalt rocks as storage material for high-temperature concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 226-235.
    12. Mahdavi, Meisam & Jurado, Francisco & Ramos, Ricardo Alan Verdú & Awaafo, Augustine, 2023. "Hybrid biomass, solar and wind electricity generation in rural areas of Fez-Meknes region in Morocco considering water consumption of animals and anaerobic digester," Applied Energy, Elsevier, vol. 343(C).
    13. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2017. "Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1320-1338.
    14. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    15. Gil, Antoni & Barreneche, Camila & Moreno, Pere & Solé, Cristian & Inés Fernández, A. & Cabeza, Luisa F., 2013. "Thermal behaviour of d-mannitol when used as PCM: Comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale," Applied Energy, Elsevier, vol. 111(C), pages 1107-1113.
    16. Bruch, A. & Molina, S. & Esence, T. & Fourmigué, J.F. & Couturier, R., 2017. "Experimental investigation of cycling behaviour of pilot-scale thermal oil packed-bed thermal storage system," Renewable Energy, Elsevier, vol. 103(C), pages 277-285.
    17. Usaola, Julio, 2012. "Participation of CSP plants in the reserve markets: A new challenge for regulators," Energy Policy, Elsevier, vol. 49(C), pages 562-571.
    18. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    19. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    20. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1261-1268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.