IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp1035-1041.html
   My bibliography  Save this article

Experimental energetic analysis of a vapor compression refrigeration system with dedicated mechanical sub-cooling

Author

Listed:
  • Qureshi, Bilal A.
  • Inam, Muhammad
  • Antar, Mohamed A.
  • Zubair, Syed M.

Abstract

In this work, an experimental investigation into the effects, in terms of energy, of employing a dedicated mechanical subcooling cycle with a residential 1.5ton simple vapor compression refrigeration system is presented. A comparative analysis of the experimental cycle performance is conducted with and without the dedicated subcooler cycle when the room temperature is kept between 18 and 22°C. This is done in order to ascertain the percentage increase in efficiency due to use of a dedicated subcooling loop. R22 is employed as the refrigerant in the main cycle whereas R12 is flowing in the dedicated subcooling cycle. The experimental outcomes indicate that the load carrying capacity of the evaporator increased by approximately 0.5kW when R22 was subcooled, in the main cycle, by 5–8°C. It was also noted that, by using the subcooling, the second-law efficiency of the cycle increased by an average of 21%. Furthermore, the general trend indicated that this percentage increase is inversely proportional to the ambient temperature variation. The experimental work proves that dedicated subcooling can be used for increasing cooling capacity and efficiency.

Suggested Citation

  • Qureshi, Bilal A. & Inam, Muhammad & Antar, Mohamed A. & Zubair, Syed M., 2013. "Experimental energetic analysis of a vapor compression refrigeration system with dedicated mechanical sub-cooling," Applied Energy, Elsevier, vol. 102(C), pages 1035-1041.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1035-1041
    DOI: 10.1016/j.apenergy.2012.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912004485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jianyi & Hu, Weiping & Hashmi, Mohammed S.J., 1993. "Super-subcooling with R12 and R22 refrigeration plants using reciprocating compressors," Applied Energy, Elsevier, vol. 45(2), pages 157-166.
    2. Cecchinato, Luca & Chiarello, Manuel & Corradi, Marco, 2010. "Design and experimental analysis of a carbon dioxide transcritical chiller for commercial refrigeration," Applied Energy, Elsevier, vol. 87(6), pages 2095-2101, June.
    3. Borges, Bruno N. & Hermes, Christian J.L. & Gonçalves, Joaquim M. & Melo, Cláudio, 2011. "Transient simulation of household refrigerators: A semi-empirical quasi-steady approach," Applied Energy, Elsevier, vol. 88(3), pages 748-754, March.
    4. Zubair, Syed M., 1990. "Improvement of refrigeration/air-conditioning performance with mechanical sub-cooling," Energy, Elsevier, vol. 15(5), pages 427-433.
    5. Llopis, R. & Torrella, E. & Cabello, R. & Sánchez, D., 2010. "Performance evaluation of R404A and R507A refrigerant mixtures in an experimental double-stage vapour compression plant," Applied Energy, Elsevier, vol. 87(5), pages 1546-1553, May.
    6. Waltrich, Maicon & Hermes, Christian J.L. & Melo, Cláudio, 2011. "Simulation-based design and optimization of refrigeration cassettes," Applied Energy, Elsevier, vol. 88(12), pages 4756-4765.
    7. Aprea, Ciro & Maiorino, Angelo & Mastrullo, Rita, 2011. "Change in energy performance as a result of a R422D retrofit: An experimental analysis for a vapor compression refrigeration plant for a walk-in cooler," Applied Energy, Elsevier, vol. 88(12), pages 4742-4748.
    8. Hermes, Christian J.L. & Melo, Cláudio & Knabben, Fernando T. & Gonçalves, Joaquim M., 2009. "Prediction of the energy consumption of household refrigerators and freezers via steady-state simulation," Applied Energy, Elsevier, vol. 86(7-8), pages 1311-1319, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hongkuan & Ma, Hongting & Ma, Shuo, 2022. "Energy, exergy, economic and environmental analysis of an indirect evaporative cooling integrated with liquid dehumidification," Energy, Elsevier, vol. 253(C).
    2. Daniel Sánchez & Jesús Catalán-Gil & Ramón Cabello & Daniel Calleja-Anta & Rodrigo Llopis & Laura Nebot-Andrés, 2020. "Experimental Analysis and Optimization of an R744 Transcritical Cycle Working with a Mechanical Subcooling System," Energies, MDPI, vol. 13(12), pages 1-27, June.
    3. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    4. Yang, Mina & Jung, Chung Woo & Kang, Yong Tae, 2015. "Development of high efficiency cycles for domestic refrigerator-freezer application," Energy, Elsevier, vol. 93(P2), pages 2258-2266.
    5. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    6. Shan, Nannan & Yin, Yonggao & Zhang, Xiaosong, 2018. "Study on performance of a novel energy-efficient heat pump system using liquid desiccant," Applied Energy, Elsevier, vol. 219(C), pages 325-337.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qureshi, Bilal Ahmed & Zubair, Syed M., 2012. "The impact of fouling on performance of a vapor compression refrigeration system with integrated mechanical sub-cooling system," Applied Energy, Elsevier, vol. 92(C), pages 750-762.
    2. Gazda, Wiesław & Kozioł, Joachim, 2013. "The estimation of energy efficiency for hybrid refrigeration system," Applied Energy, Elsevier, vol. 101(C), pages 49-57.
    3. Harrington, Lloyd & Aye, Lu & Fuller, Bob, 2018. "Impact of room temperature on energy consumption of household refrigerators: Lessons from analysis of field and laboratory data," Applied Energy, Elsevier, vol. 211(C), pages 346-357.
    4. Borges, Bruno N. & Melo, Cláudio & Hermes, Christian J.L., 2015. "Transient simulation of a two-door frost-free refrigerator subjected to periodic door opening and evaporator frosting," Applied Energy, Elsevier, vol. 147(C), pages 386-395.
    5. Mastrullo, R. & Mauro, A.W. & Menna, L. & Palma, A. & Vanoli, G.P., 2014. "Transient model of a vertical freezer with door openings and defrost effects," Applied Energy, Elsevier, vol. 121(C), pages 38-50.
    6. Waltrich, Maicon & Hermes, Christian J.L. & Melo, Cláudio, 2011. "Simulation-based design and optimization of refrigeration cassettes," Applied Energy, Elsevier, vol. 88(12), pages 4756-4765.
    7. Negrão, Cezar O.R. & Hermes, Christian J.L., 2011. "Energy and cost savings in household refrigerating appliances: A simulation-based design approach," Applied Energy, Elsevier, vol. 88(9), pages 3051-3060.
    8. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
    9. Llopis, Rodrigo & Sánchez, Daniel & Sanz-Kock, Carlos & Cabello, Ramón & Torrella, Enrique, 2015. "Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems," Applied Energy, Elsevier, vol. 138(C), pages 133-142.
    10. Sun, Zhili & Liang, Youcai & Liu, Shengchun & Ji, Weichuan & Zang, Runqing & Liang, Rongzhen & Guo, Zhikai, 2016. "Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A," Applied Energy, Elsevier, vol. 184(C), pages 19-25.
    11. Maximilian Lösch & Markus Fallmann & Agnes Poks & Martin Kozek, 2023. "Simulation-Based Sizing of a Secondary Loop Cooling System for a Refrigerated Vehicle," Energies, MDPI, vol. 16(18), pages 1-23, September.
    12. Aprea, Ciro & Maiorino, Angelo & Mastrullo, Rita, 2011. "Change in energy performance as a result of a R422D retrofit: An experimental analysis for a vapor compression refrigeration plant for a walk-in cooler," Applied Energy, Elsevier, vol. 88(12), pages 4742-4748.
    13. Farzamkia, Saleh & Ranjbar, Hossein & Hatami, Alireza & Iman-Eini, Hossein, 2016. "A novel PSO (Particle Swarm Optimization)-based approach for optimal schedule of refrigerators using experimental models," Energy, Elsevier, vol. 107(C), pages 707-715.
    14. Torrella, E. & Larumbe, J.A. & Cabello, R. & Llopis, R. & Sanchez, D., 2011. "A general methodology for energy comparison of intermediate configurations in two-stage vapour compression refrigeration systems," Energy, Elsevier, vol. 36(7), pages 4119-4124.
    15. Zehir, Mustafa Alparslan & Batman, Alp & Bagriyanik, Mustafa, 2016. "Review and comparison of demand response options for more effective use of renewable energy at consumer level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 631-642.
    16. Wu, H. & Tassou, S.A. & Karayiannis, T.G., 2013. "Modelling and control approaches for energy reduction in continuous frying systems," Applied Energy, Elsevier, vol. 112(C), pages 939-948.
    17. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong, 2023. "Numerical exploration and experimental validation of a tri-generation heat pump system in cooling mode," Energy, Elsevier, vol. 273(C).
    18. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    19. Martin Almenta, M. & Morrow, D.J. & Best, R.J. & Fox, B. & Foley, A.M., 2016. "Domestic fridge-freezer load aggregation to support ancillary services," Renewable Energy, Elsevier, vol. 87(P2), pages 954-964.
    20. Borges, Bruno N. & Hermes, Christian J.L. & Gonçalves, Joaquim M. & Melo, Cláudio, 2011. "Transient simulation of household refrigerators: A semi-empirical quasi-steady approach," Applied Energy, Elsevier, vol. 88(3), pages 748-754, March.

    More about this item

    Keywords

    Subcooling; Experiment; Refrigeration; R12; R22;
    All these keywords.

    JEL classification:

    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)
    • R22 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Other Demand

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1035-1041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.