IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v489y2025ics0096300324006179.html
   My bibliography  Save this article

Cooperation under endogenous punishment in the spatial public goods game

Author

Listed:
  • Gao, Shiping
  • Suo, Jinghui
  • Li, Nan

Abstract

Punishment and network reciprocity have profound implications for the evolution of cooperation. However, existing research on the consequences of cooperation under punishment in social networks has largely relied on agent-based models and laboratory experiments. Moreover, different from the majority of existing studies where punishment is always believed to be deterministic, the individuals' preferences for certain behaviors are always stochastic and vary with the environment. There is an urgent need to explore how cooperation evolves when punishment is stochastic and endogenous in social networks. In this paper, we propose a theoretical model of endogenous punishment in spatial public goods games. Cooperators each can stochastically choose whether to participate in the punishment for defectors. The choice to penalize defectors comes with a price. Whether and how defectors are punished is endogenously determined by the cooperators' preferences for executing the costly punishment. We analyze how cooperation evolves under endogenous punishment based on a regular network in the mean-field limit and outline the conditions under which endogenous punishment can support cooperation. When network reciprocity is unfavorable for cooperation, endogenous punishment can be effective in supporting cooperation. On the contrary, endogenous punishment no longer supports or even hinders the promoting effect of network reciprocity on cooperation. These findings illustrate that the effectiveness of endogenous punishment in fostering cooperation is dependent on the cooperators' willingness to pay for punishment as well as the topology of social networks.

Suggested Citation

  • Gao, Shiping & Suo, Jinghui & Li, Nan, 2025. "Cooperation under endogenous punishment in the spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 489(C).
  • Handle: RePEc:eee:apmaco:v:489:y:2025:i:c:s0096300324006179
    DOI: 10.1016/j.amc.2024.129156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324006179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Armin Falk & Ernst Fehr & Urs Fischbacher, 2005. "Driving Forces Behind Informal Sanctions," Econometrica, Econometric Society, vol. 73(6), pages 2017-2030, November.
    2. Chica, Manuel & Hernández, Juan M. & Perc, Matjaž, 2023. "Rewarding policies in an asymmetric game for sustainable tourism," Applied Mathematics and Computation, Elsevier, vol. 457(C).
    3. Aron Szekely & Francesca Lipari & Alberto Antonioni & Mario Paolucci & Angel Sánchez & Luca Tummolini & Giulia Andrighetto, 2021. "Evidence from a long-term experiment that collective risks change social norms and promote cooperation," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. repec:nas:journl:v:115:y:2018:p:30-35 is not listed on IDEAS
    5. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    6. Charles G Nathanson & Corina E Tarnita & Martin A Nowak, 2009. "Calculating Evolutionary Dynamics in Structured Populations," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-7, December.
    7. Lv, Shaojie & Li, Jiaying & Zhao, Changheng, 2023. "The evolution of cooperation in voluntary public goods game with shared-punishment," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Casari, Marco & Luini, Luigi, 2009. "Cooperation under alternative punishment institutions: An experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 273-282, August.
    9. Alice Moon & Leif D. Nelson, 2020. "The Uncertain Value of Uncertainty: When Consumers Are Unwilling to Pay for What They Like," Management Science, INFORMS, vol. 66(10), pages 4686-4702, October.
    10. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    11. Yang, Zhihu & Li, Zhi & Wang, Long, 2020. "Evolution of cooperation in a conformity-driven evolving dynamic social network," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    12. Graham Loomes & Ganna Pogrebna, 2017. "Do Preference Reversals Disappear When We Allow for Probabilistic Choice?," Management Science, INFORMS, vol. 63(1), pages 166-184, January.
    13. Satoshi Uchida & Hitoshi Yamamoto & Isamu Okada & Tatsuya Sasaki, 2019. "Evolution of Cooperation with Peer Punishment under Prospect Theory," Games, MDPI, vol. 10(1), pages 1-13, February.
    14. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    15. Xiaofeng Wang, 2021. "Costly Participation and The Evolution of Cooperation in the Repeated Public Goods Game," Dynamic Games and Applications, Springer, vol. 11(1), pages 161-183, March.
    16. repec:plo:pone00:0124561 is not listed on IDEAS
    17. Peter D. Taylor & Troy Day & Geoff Wild, 2007. "Evolution of cooperation in a finite homogeneous graph," Nature, Nature, vol. 447(7143), pages 469-472, May.
    18. Chen, Ya-Shan & Yang, Han-Xin & Guo, Wen-Zhong & Liu, Geng-Geng, 2018. "Promotion of cooperation based on swarm intelligence in spatial public goods games," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 614-620.
    19. Chen, Wei & Yang, Zhihu & Wu, Te, 2021. "Evolution of cooperation driven by collective interdependence on multilayer networks," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    20. Wang, Shengxian & Chen, Xiaojie & Xiao, Zhilong & Szolnoki, Attila, 2022. "Decentralized incentives for general well-being in networked public goods game," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    21. Karl Sigmund & Hannelore De Silva & Arne Traulsen & Christoph Hauert, 2010. "Social learning promotes institutions for governing the commons," Nature, Nature, vol. 466(7308), pages 861-863, August.
    22. Yang, Han-Xin & Chen, Xiaojie, 2018. "Promoting cooperation by punishing minority," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 460-466.
    23. Xiaojie Chen & Attila Szolnoki, 2018. "Punishment and inspection for governing the commons in a feedback-evolving game," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-15, July.
    24. Wu, Te & Wang, Long, 2018. "Adaptive play stabilizes cooperation in continuous public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 427-435.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling, Ting & Li, Zhang & Feng, Minyu & Szolnoki, Attila, 2025. "Supervised cooperation on interdependent public goods games," Applied Mathematics and Computation, Elsevier, vol. 492(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Shiping & Li, Nan, 2023. "Preference reversal and the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    2. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    3. Zhang, Wei & Brandes, Ulrik, 2023. "Is cooperation sustained under increased mixing in evolutionary public goods games on networks?," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    4. Zhang, Boyu & An, Xinmiao & Dong, Yali, 2021. "Conditional cooperator enhances institutional punishment in public goods game," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    5. Yan, Fang & Hou, Xiaorong & Tian, Tingting & Chen, Xiaojie, 2023. "Nonlinear model reference adaptive control approach for governance of the commons in a feedback-evolving game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Huang, Shaoxu & Liu, Xuesong & Hu, Yuhan & Fu, Xiao, 2023. "The influence of aggressive behavior on cooperation evolution in social dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    7. Cheng, Fei & Chen, Tong & Chen, Qiao, 2020. "Rewards based on public loyalty program promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    8. Wang, Jianwei & Xu, Wenshu & Yu, Fengyuan & He, Jialu & Chen, Wei & Dai, Wenhui, 2024. "Evolution of cooperation under corrupt institutions," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    9. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    10. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2019. "Cleverly handling the donation information can promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 363-373.
    11. Tekwa, Edward W. & Gonzalez, Andrew & Loreau, Michel, 2019. "Spatial evolutionary dynamics produce a negative cooperation–population size relationship," Theoretical Population Biology, Elsevier, vol. 125(C), pages 94-101.
    12. Allen, Benjamin & McAvoy, Alex, 2024. "The coalescent in finite populations with arbitrary, fixed structure," Theoretical Population Biology, Elsevier, vol. 158(C), pages 150-169.
    13. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Critical thresholds of benefit distribution in an extended snowdrift game model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    14. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    15. Kroumi, Dhaker & Lessard, Sabin, 2015. "Evolution of cooperation in a multidimensional phenotype space," Theoretical Population Biology, Elsevier, vol. 102(C), pages 60-75.
    16. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Alternating rotation of coordinated and anti-coordinated action due to environmental feedback and noise," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    17. Dhaker Kroumi, 2021. "Aspiration Can Promote Cooperation in Well-Mixed Populations As in Regular Graphs," Dynamic Games and Applications, Springer, vol. 11(2), pages 390-417, June.
    18. Yang, Zhihu & Li, Zhi & Wang, Long, 2020. "Evolution of cooperation in a conformity-driven evolving dynamic social network," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    19. Qian, Jun & Zhang, Tongda & Zhang, Yingfeng & Chai, Yueting & Sun, Xiao & Wang, Zhen, 2023. "The construction of peer punishment preference: how central power shapes prosocial and antisocial punishment behaviors," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    20. Hu, Liwen & He, Nanrong & Weng, Qifeng & Chen, Xiaojie & Perc, Matjaž, 2020. "Rewarding endowments lead to a win-win in the evolution of public cooperation and the accumulation of common resources," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:489:y:2025:i:c:s0096300324006179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.