IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v193y2025ics0960077925000839.html
   My bibliography  Save this article

Coevolutionary dynamics of feedback-evolving games in structured populations

Author

Listed:
  • Wang, Qiushuang
  • Chen, Xiaojie
  • Szolnoki, Attila

Abstract

The interdependence between an individual strategy decision and the resulting change of environmental state is often a subtle process. Feedback-evolving games have been a prevalent framework for studying such feedback in well-mixed populations, yielding important insights into the coevolutionary dynamics. However, since real populations are usually structured, it is essential to explore how population structure affects such coevolutionary dynamics. Our work proposes a coevolution model of strategies and environmental state in a structured population depicted by a regular graph. We investigate the system dynamics, and theoretically demonstrate that there exist different evolutionary outcomes including oscillation, bistability, the coexistence of oscillation and dominance, as well as the coexistence of cooperation and defection. Our theoretical predictions are validated through numerical calculations. By using Monte Carlo simulations we examine how the number of neighbors influences the coevolutionary dynamics, particularly the size of the attractive domain of the replete environmental state in the cases of bistability or cooperation-defection coexistence. Specifically, in the case of bistability, a larger neighborhood size may be beneficial to save the environment when the environmental enhancement rate by cooperation/degradation rate by defection is high. Conversely, if this ratio is low, a smaller neighborhood size is more beneficial. In the case of cooperator-defector coexistence, environmental maintenance is basically influenced by individual payoffs. When the ratio of temptation minus reward versus punishment minus sucker’s payoff is high, a larger neighborhood size is more favorable. In contrast, when the mentioned ratio is low, a smaller neighborhood size is more advantageous.

Suggested Citation

  • Wang, Qiushuang & Chen, Xiaojie & Szolnoki, Attila, 2025. "Coevolutionary dynamics of feedback-evolving games in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925000839
    DOI: 10.1016/j.chaos.2025.116070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaoqian Wang & Matjaž Perc & Attila Szolnoki, 2024. "Evolutionary dynamics of any multiplayer game on regular graphs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Yishen Jiang & Xin Wang & Longzhao Liu & Ming Wei & Jingwu Zhao & Zhiming Zheng & Shaoting Tang, 2023. "Nonlinear eco-evolutionary games with global environmental fluctuations and local environmental feedbacks," PLOS Computational Biology, Public Library of Science, vol. 19(6), pages 1-20, June.
    3. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    4. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    5. Benjamin Allen & Gabor Lippner & Yu-Ting Chen & Babak Fotouhi & Naghmeh Momeni & Shing-Tung Yau & Martin A. Nowak, 2017. "Evolutionary dynamics on any population structure," Nature, Nature, vol. 544(7649), pages 227-230, April.
    6. Chengyi Tu & Paolo D’Odorico & Zhe Li & Samir Suweis, 2023. "The emergence of cooperation from shared goals in the governance of common-pool resources," Nature Sustainability, Nature, vol. 6(2), pages 139-147, February.
    7. Jeff Gore & Hyun Youk & Alexander van Oudenaarden, 2009. "Snowdrift game dynamics and facultative cheating in yeast," Nature, Nature, vol. 459(7244), pages 253-256, May.
    8. Saptarshi Pal & Christian Hilbe, 2022. "Reputation effects drive the joint evolution of cooperation and social rewarding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Wang, Qiang & He, Nanrong & Chen, Xiaojie, 2018. "Replicator dynamics for public goods game with resource allocation in large populations," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 162-170.
    10. Andrew R. Tilman & Joshua B. Plotkin & Erol Akçay, 2020. "Evolutionary games with environmental feedbacks," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    11. Xiaojie Chen & Attila Szolnoki, 2018. "Punishment and inspection for governing the commons in a feedback-evolving game," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Critical thresholds of benefit distribution in an extended snowdrift game model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    3. Wu, Chengxing & Deng, Hongzhong & Tu, Chengyi, 2024. "A general network complexity reduction method for cooperative evolution in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    4. Lv, Shaojie & Li, Jiaying & Zhao, Changheng, 2024. "Fixation of cooperation in evolutionary games with environmental feedbacks," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    5. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2023. "Evolution of cooperation with nonlinear environment feedback in repeated public goods game," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    6. Yang, Luhe & Zhang, Lianzhong, 2021. "Environmental feedback in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    8. Yan, Fang & Hou, Xiaorong & Tian, Tingting & Chen, Xiaojie, 2023. "Nonlinear model reference adaptive control approach for governance of the commons in a feedback-evolving game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    10. Huang, Shaoxu & Liu, Xuesong & Hu, Yuhan & Fu, Xiao, 2023. "The influence of aggressive behavior on cooperation evolution in social dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    11. Cheng, Fei & Chen, Tong & Chen, Qiao, 2020. "Rewards based on public loyalty program promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    12. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    13. Mohammad Salahshour, 2023. "Evolution as a result of resource flow in ecosystems: Ecological dynamics can drive evolution," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-16, October.
    14. Liu, Xuesong & Pan, Qiuhui & He, Mingfeng & Liu, Aizhi, 2019. "Promotion of cooperation in evolutionary game dynamics under asymmetric information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 258-266.
    15. Di, Changyan & Zhou, Qingguo & Shen, Jun & Wang, Jinqiang & Zhou, Rui & Wang, Tianyi, 2023. "The coupling effect between the environment and strategies drives the emergence of group cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    16. Liu, Jiaqi & Zhang, Qianwei, 2025. "Evolutionary dynamics of a probabilistic punishment mechanism with environmental feedback in regular networked Prisoner's Dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
    17. Wang, Shengxian & Chen, Xiaojie & Xiao, Zhilong & Szolnoki, Attila, 2022. "Decentralized incentives for general well-being in networked public goods game," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    18. Allen, Benjamin & McAvoy, Alex, 2024. "The coalescent in finite populations with arbitrary, fixed structure," Theoretical Population Biology, Elsevier, vol. 158(C), pages 150-169.
    19. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    20. Wang, Chaoqian & Szolnoki, Attila, 2023. "Inertia in spatial public goods games under weak selection," Applied Mathematics and Computation, Elsevier, vol. 449(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925000839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.