IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v361y2019icp377-388.html
   My bibliography  Save this article

Precisely identifying the epidemic thresholds in real networks via asynchronous updating

Author

Listed:
  • Cai, Shi-Min
  • Chen, Xuan-Hao
  • Ye, Xi-Jun
  • Tang, Ming

Abstract

Two numerical simulation methods, asynchronous updating and synchronous updating, are applied to mimic epidemic spreading and identify epidemic threshold. As a continuous time Markov process, asynchronous updating makes only one node be selected to change its state in each time step, and thus reflects the fact that nodes are updated independently, which is more reasonable to describe the real dynamic process of disease spreading. Unlike previous studies based on prevalent synchronous updating, in this paper, we mainly apply asynchronous updating to precisely identify epidemic thresholds of SIR spreading dynamics in real networks. Meanwhile, we also use four benchmark theoretical methods, i.e., the heterogeneous mean-field (HMF), the quenched mean-field (QMF), the dynamical message passing (DMP) and the connectivity matrix (CM), to verify the identification accuracy based on asynchronous updating. The extensive numerical experiments in 41 real networks show that the identification accuracy approaches more closely to the theoretical results obtained from the CM because the CM incorporates network topology with dynamic correlations. In addition, because asynchronous updating is high time complexity comparing with synchronous updating, we further investigate the approximation of synchronous updating to asynchronous updating by modulating very small time step. When the time step of synchronous updating is set with 0.2, it can approach closely to the identification accuracy based asynchronous updating, and guarantee a lower time complexity.

Suggested Citation

  • Cai, Shi-Min & Chen, Xuan-Hao & Ye, Xi-Jun & Tang, Ming, 2019. "Precisely identifying the epidemic thresholds in real networks via asynchronous updating," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 377-388.
  • Handle: RePEc:eee:apmaco:v:361:y:2019:i:c:p:377-388
    DOI: 10.1016/j.amc.2019.05.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319304412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.05.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhan, Xiu-Xiu & Liu, Chuang & Zhou, Ge & Zhang, Zi-Ke & Sun, Gui-Quan & Zhu, Jonathan J.H. & Jin, Zhen, 2018. "Coupling dynamics of epidemic spreading and information diffusion on complex networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 437-448.
    2. Zhang, Hai-Feng & Shu, Pan-Pan & Wang, Zhen & Tang, Ming & Small, Michael, 2017. "Preferential imitation can invalidate targeted subsidy policies on seasonal-influenza diseases," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 332-342.
    3. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    4. Chen, Xuan-Hao & Cai, Shi-Min & Wang, Wei & Tang, Ming & Stanley, H. Eugene, 2018. "Predicting epidemic threshold of correlated networks: A comparison of methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 500-511.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ningbo & Yang, Qiwen & Zhu, Xuzhen, 2022. "The impact of social resource allocation on epidemic transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    2. Yang, Qiwen & Zhu, Xuzhen & Tian, Yang & Wang, Guanglu & Zhang, Yuexia & Chen, Lei, 2021. "The influence of heterogeneity of adoption thresholds on limited information spreading," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    3. Wang, Haiying & Moore, Jack Murdoch & Small, Michael & Wang, Jun & Yang, Huijie & Gu, Changgui, 2022. "Epidemic dynamics on higher-dimensional small world networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    4. Tian, Yang & Tian, Hui & Cui, Yajuan & Zhu, Xuzhen & Cui, Qimei, 2023. "Influence of behavioral adoption preference based on heterogeneous population on multiple weighted networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    5. Chen, Xiaolong & Gong, Kai & Wang, Ruijie & Cai, Shimin & Wang, Wei, 2020. "Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics," Applied Mathematics and Computation, Elsevier, vol. 385(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiao-Long & Wang, Rui-Jie & Yang, Chun & Cai, Shi-Min, 2019. "Hybrid resource allocation and its impact on the dynamics of disease spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 156-165.
    2. Jamie Bedson & Laura A. Skrip & Danielle Pedi & Sharon Abramowitz & Simone Carter & Mohamed F. Jalloh & Sebastian Funk & Nina Gobat & Tamara Giles-Vernick & Gerardo Chowell & João Rangel Almeida & Ran, 2021. "A review and agenda for integrated disease models including social and behavioural factors," Nature Human Behaviour, Nature, vol. 5(7), pages 834-846, July.
    3. Wang, Huan & Ma, Chuang & Chen, Han-Shuang & Zhang, Hai-Feng, 2021. "Effects of asymptomatic infection and self-initiated awareness on the coupled disease-awareness dynamics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    4. Wang, Yanan & Wang, Jun & Zhang, Ruilin & Liu, Ou, 2022. "Enhanced by mobility? Effect of users’ mobility on information diffusion in coupled online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    5. Zhou, Rong & Wu, Qingchu, 2019. "Epidemic spreading dynamics on complex networks with adaptive social-support," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 778-787.
    6. Catalina Amuedo-Dorantes & Neeraj Kaushal & Ashley N. Muchow, 2021. "Timing of social distancing policies and COVID-19 mortality: county-level evidence from the U.S," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1445-1472, October.
    7. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
    9. Victor W. Chu & Raymond K. Wong & Chi-Hung Chi & Wei Zhou & Ivan Ho, 2017. "The design of a cloud-based tracker platform based on system-of-systems service architecture," Information Systems Frontiers, Springer, vol. 19(6), pages 1283-1299, December.
    10. Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    11. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    12. Phillip Stroud & Sara Del Valle & Stephen Sydoriak & Jane Riese & Susan Mniszewski, 2007. "Spatial Dynamics of Pandemic Influenza in a Massive Artificial Society," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(4), pages 1-9.
    13. Caixia Wang & Huijie Li, 2022. "Public Compliance Matters in Evidence-Based Public Health Policy: Evidence from Evaluating Social Distancing in the First Wave of COVID-19," IJERPH, MDPI, vol. 19(7), pages 1-13, March.
    14. Krista Ruffini & Aaron Sojourner & Abigail Wozniak, 2021. "Who'S In And Who'S Out Under Workplace Covid Symptom Screening?," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 40(2), pages 614-641, March.
    15. Chen, Jie & Hu, Mao-Bin & Li, Ming, 2020. "Traffic-driven epidemic spreading dynamics with heterogeneous infection rates," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    16. Lin Ma & Gil Shapira & Damien de Walque & Quy‐Toan Do & Jed Friedman & Andrei A. Levchenko, 2022. "The Intergenerational Mortality Trade‐Off Of Covid‐19 Lockdown Policies," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(3), pages 1427-1468, August.
    17. Chen, Zheng & Wu, Yong-Ping & Feng, Guo-Lin & Qian, Zhong-Hua & Sun, Gui-Quan, 2021. "Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    18. Philipp Ager & Katherine Eriksson & Ezra Karger & Peter Nencka & Melissa A. Thomasson, 2024. "School Closures during the 1918 Flu Pandemic," The Review of Economics and Statistics, MIT Press, vol. 106(1), pages 266-276, January.
    19. Christopher Bronk Ramsey, 2020. "Human agency and infection rates: Implications for social distancing during epidemics," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-17, December.
    20. Jérôme Adda, 2016. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," The Quarterly Journal of Economics, Oxford University Press, vol. 131(2), pages 891-941.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:361:y:2019:i:c:p:377-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.